Sudden Infant Death Syndrome: A Review and Re-evaluation of Vaccination Risks

Main Article Content

Paul Nathan Goldwater Reginald M. Gorczynski Edward J. Steele

Abstract

Sudden infant death syndrome (SIDS) remains a leading cause of infant mortality. Medical science’s failure to elucidate its cause is opprobrious. SIDS shares many epidemiological traits with infectious diseases. Autopsy findings show very consistent findings in ~90% of cases, and immunological investigations consistently reveal underlying activation of inflammatory pathways. Surprisingly, most mainstream researchers have largely ignored these key findings.    The “Triple Risk Hypothesis” remains the mainstay for mainstream researchers. The hypothesis encompasses three main ideas: 1) a vulnerable infant, 2) a critical development period and 3) an exogenous stressor which combine lethally. Stressors include prone sleeping, smoke exposure, and overheating. Infections, though often overlooked, can trigger deadly immune responses. The COVID-19 pandemic and the use of parenterally administered SARS-Cov-2 vaccines provided an example of a lethal immunopathogenicity in elderly comorbid patients. During the pandemic, we reviewed papers on the impact of injected vaccines on infant mortality. The papers analysed vaccine adverse event reporting systems (VAERS) to conclude a possible causal relationship existed. It is of particular note that approximately 50% of cases in the VAERS dataset have been diagnosed as Sudden Infant Death Syndrome (SIDS). VAERS are known to capture a small minority of vaccine associated adverse events (estimated to be ~1%). Studies indicate that vaccination is preventative, but control groups often have more SIDS risk factors. The findings from the VAERS are of significant concern to the scientific, medical, public, and governmental communities. This review provides a scientific analysis of this apparent problem and proposes a case for vaccines that provide IgA-based mucosal immunity to replace (where appropriate) the potentially harmful parenterally administered vaccines currently in use. In addition to recommending the use of new safe vaccines, we highlight the role of breastfeeding in the prevention of sudden infant death syndrome (SIDS).

Keywords: Sudden infant death syndrome, vaccination, immunisation, adjuvants, breastfeeding

Article Details

How to Cite
GOLDWATER, Paul Nathan; GORCZYNSKI, Reginald M.; STEELE, Edward J.. Sudden Infant Death Syndrome: A Review and Re-evaluation of Vaccination Risks. Medical Research Archives, [S.l.], v. 13, n. 3, mar. 2025. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/6349>. Date accessed: 06 apr. 2025. doi: https://doi.org/10.18103/mra.v3i3.6349.
Section
Review Articles

References

1. Krous HF, Beckwith JB, Byard RW, et al.: Sudden infant death syndrome and unclassified sudden infant deaths: a definitional and diagnostic approach. Pediatrics. 2004;114:234 - 2388. DOI: 10.1542/peds.114.1.234

2. Raab CP. Sudden Unexpected Infant Death (SUID) and Sudden Infant Death Syndrome (SIDS). Merck (MSD) Manual. Professional Version. Published Feb 2023. Accessed January 8, 2025 https://www.msdmanuals.com/professional/pediatrics/miscellaneous-disorders-in-infants-and-children/sudden-unexpected-infant-death-suid-and-sudden-infant-death-syndrome-sids

3. Miller NZ, Goldman S.: Infant mortality rates regressed against number of vaccine doses routinely given: Is there a biochemical or synergistic toxicity? Human Experimental Toxicology, 2011:30:1420–1428. DOI: 10.1177/0960327111407644

4. Goldman GS, Miller NZ.: Reaffirming a Positive Correlation Between Number of Vaccine Doses and Infant Mortality Rates: A Response to Critics. Cureus 2023;15(2), e34566. DOI 10.7759/cureus.34566.

5. Goldwater PN.: The Science (or Nonscience) of Research Into Sudden Infant Death Syndrome (SIDS). Front. Pediatr. 2022;10:865051. https://doi.org/10.3389/fped.2022.865051

6. Goldwater, P.N.: Current SIDS research: time to resolve conflicting research hypotheses and collaborate. Pediatr Res. 2023;12:1–5. https://doi.org/10.1038/s41390-023-02611-4

7. Lindley RA, Steele EJ.: Analysis of SARS-CoV-2 haplotypes and genomic sequences during 2020 in Victoria, Australia, in the context of putative deficits in innate immune deaminase anti-viral responses. Scand J Immunol. 2021;94:e13100. https://doi.org/10.1111/sji.13100

8. Guntheroth WG, Spiers PS.: The triple risk hypotheses in sudden infant death syndrome. Pediatrics. 2002;110: e64. https://doi.org/10.1542/peds.110.5.e64

9. Goldwater PN, Gebien DJ.: Metabolic acidosis and sudden infant death syndrome: overlooked data provides insight into SIDS pathogenesis. World J Pediatr 2024; https://doi.org/10.1007/s12519-024-00860-9

10. Goldwater PN, Williams V, Bourne AJ, Byard RW.: Sudden infant death syndrome: a possible clue to causation. Med J Austr 1990;153:59-60. DOI: 10.5694/j.1326-5377.1990.tb125473.x

11. Emura I, Usuda H.: Biochemical, Cytological and Histopathological Examination of Sudden Unexpected Death in Infancy. Pathology International. 2011;61:469-474. https://doi.org/10.1111/j.1440-1827.2011.02690.x

12. Hanssen TA, Jørgensen L.: Obstruction of the Lung Capillaries by Blood Platelet Aggregates and Leucocytes in Sudden Infant Death Syndrome. APMIS : Acta Pathologica, Microbiologica, Et Immunologica Scandinavica. 2010;118: 958-967. https://doi.org/10.1111/j.1600-0463.2010.02651.x

13. Sayers NM, Drucker DB, Hutchinson IV, Barson AJ.: Preliminary investigation of lethally toxic sera of sudden infant death syndrome victims and neutralization by commercially available immunoglobulins and adult sera. FEMS Immunol Med Microbiol. 1999;5:193 - 198. https://doi.org/10.1111/j.1574-695X.1999.tb01343.x

14. Malam JE, Carrick GF, Telford DR, Morris JA.: Staphylococcal Toxins and Sudden Infant Death Syndrome. J Clin Pathol. 1992;45:716 - 721. https://doi.org/10.1136/jcp.45.8.716

15. Highet AR, Goldwater PN. :Staphylococcal enterotoxin genes are common in Staphylococcus aureus intestinal flora in sudden infant death syndrome (SIDS) and live comparison infants. FEMS Immunol Med Microbiol. 2009;57:151-155. https://doi.org/10.1111/j.1574-695X.2009.00592.x

16. Ponsonby AL, Dwyer T, Gibbons LE, Cochrane JA, Wang YG.: Factors potentiating the risk of sudden infant death syndrome associated with the prone position. N Engl J Med. 1993;329:377-382. DOI: 10.1056/NEJM19930805329060

17. Helweg-Larsen K, Lundemose JB, Oyen N.: et al. Interactions of infectious symptoms and modifiable risk factors in sudden infant death syndrome. The Nordic Epidemiological SIDS study. Acta Pediatrica. 1999;88: 521- 527. https://doi.org/10.1111/j.1651-2227.1999.tb00168.x

18. Steele EJ, Lindley RA.: Analysis of APOBEC and ADAR Deaminase-Driven Riboswitch Haplotypes in COVID-19 RNA Strain Variants and the Implications for Vaccine Design. In Understanding the Origin and Global Spread of COVID-19 (Wickramasinghe, Gorczynski, R.M & Steele, E.J., eds) p.111 – 143 (World Scientific Publishing Co. Pty Ltd, Singapore, 2022. https://doi.org/10.1142/9789811259081_0005

19. Gorczynski RM, Lindley RA, Steele EJ, Wickramasinghe NC.: Nature of Acquired Immune Responses, Epitope Specificity and Resultant Protection from SARS-CoV-2. J. Pers. Med. 2021;11(12): 1253. https://doi.org/10.3390/jpm11121253

20. Fauci AS, Lane HC, Redfield RR.: COVID-19 – Navigating the Uncharted. New Engl J Med 2020;382:1268-1269. DOI: 10.1056/NEJMe2002387

21. Morens DM, Taubenberger JK, Fauci AS.: Rethinking next-generation vaccines for coronaviruses, influenzaviruses, and other respiratory viruses. Cell Host & Microbe. 2023;31:146-157. DOI: 10.1016/j.chom.2022.11.016

22. Subramanian SV, Kumar A.: Increases in COVID-19 are unrelated to levels of vaccination across 68 countries and 2947 counties in the United States. Eur J Epidemiol 2021;36:1237-1240. https://doi.org/10.1007/s10654-021-00808-7

23. Klein NP.: Added Benefit of COVID-19 Vaccination after Previous Infection N Engl J Med. 2022;386:1278-1279. DOI: 10.1056/NEJMe2201380

24. Muttappallymyalil J, Nair SC, Changerath R, et al.: Vaccination Rate and Incidence of COVID-19 and Case Fatality Rate (CFR): A Correlational Study Using Data From 2019 to 2021. Cureus. 2022;14: e28210. DOI: 10.7759/cureus.28210

25. Pisanic N, Antar AAAR, Hetrich MK, et al.: Early, robust mucosal secretory IgA but not IgG response to SARS-CoV-2 spike in oral fluid is associated with faster viral clearance and COVID-19 symptom resolution. J Infect Dis. 2024; jiae447. doi: https://doi.org/10.1101/2024.02.21.24303146

26. Hansen CH, Michlmayr D, Gubbels SM, Mølbak K, Ethelberg S.: Assessment of protection against reinfection with SARS-CoV-2 among 4 million PCR-tested individuals in Denmark in 2020: A population-level observational study. Lancet 2021;397:1204-1212. DOI: 10.1016/S0140-6736(21)00575-4

27. Díaz-Menéndez M, de la Calle-Prieto F, Montejano R. et al.: Clinical Characteristics and Outcome of Hospitalized Elderly Patients With COVID- 19 After Vaccine Failure. Vaccine. 2022;40:4307-4311. https://doi.org/10.1016/j.vaccine.2022.06.003

28. Matsumura Y, Yamamoto M, Shinohara K, et al. et al. High Mortality and Morbidity Among Vaccinated Residents Infected With the SARS-CoV-2 Omicron Variant During an Outbreak in a Nursing Home in Kyoto City, Japan. Am J Infect Control 2023;51:800-806. https://doi.org/10.1016/j.ajic.2022.09.007

29. Schoggins JW, Rice CM.: Interferon-stimulated genes and their antiviral effector functions. Curr Opin Virol. 2011;1:519-525. https://doi.org/10.1016/j.coviro.2011.10.008

30. Schneider WM, Chevillotte MD, Rice CM.: Interferon-stimulated genes: A complex web of host defenses. Annu Rev Immunol. 2014;232:513-545. https://doi.org/10.1146/annurev-immunol-032713-120231

31. Tomasi TB, Bienenstock J.: Secretory immunoglobulins. Adv Immunol . 1968;9:1-96. https://doi.org/10.1016/S0065-2776(08)60441-1

32. Russell MW, Mestecky J.: Mucosal immunity: The missing link in comprehending SARS-CoV-2 infection and transmission. Front. Immunol. 2022;13:957107. https://doi.org/10.3389/fimmu.2022.957107

33. Steele EJ, Chaicumpa W, Rowley D.: Isolation and biological properties of three classes of rabbit antibody to Vibrio Cholerae. J Infect Dis. 1974;130:93-103. https://doi.org/10.1093/infdis/130.2.93

34. Steele EJ.: Efficiency of antibody classes in cholera immunity. PhD diss. University of Adelaide, 1975.

35. Bleier BS, Ramanathan M, Lane AP.: COVID-19 vaccines may not prevent nasal SARS-CoV-2 infection and asymptomatic transmission. Otolaryngol Head Neck Surg. 2021;164:305-307. https://doi.org/10.1177/0194599820982633

36. Schiavone M, Gasperetti A, Mitacchione G, Viecca M, Forleo GB.: Response to: COVID-19 re-infection vaccinated individuals as a potential source of transmission. Eur J Clin Invest. 2021;51:e13544. https://doi.org/10.1111/eci.13544

37. Wilyman J.: A critical analysis of the Australian government’s rationale for its vaccination policy. Doctor of Philosophy thesis, University of Wollongong, 2015.

38. Landa-Rivera JL, Pérez-Pérez, J, González-Núñez M. et al.: Population-Based Survey Showing That Breastfed Babies Have a Lower Frequency of Risk Factors for Sudden Infant Death Syndrome Than Nonbreastfed Babies. Breastfeed Med. 2022;17: 182–188. https://doi.org/10.1089/bfm.2021.0113

39. Lucas C, Wong P, Klein J, et al.: Longitudinal analyses reveal immunological misfiring in severe COVID-19. Nature. 2020;584:463-69. https://doi.org/10.1038/s41586-020-2588-y

40. Acharya D, Liu G-Q, Gack MU.: Dysregulation of type I interferon responses in COVID-19 Nat. Rev Immunol. 2020;20:397- 398. https://doi.org/10.1038/s41577-020-0346-x

41. Blanco-Melo D, Nilsson-Payant BE, Liu W-C, et al.: Imbalanced Host Response to SARS-CoV-2 Drives Development of COVID-19. Cell. 2020;181:1036-1045. DOI: 10.1016/j.cell.2020.04.026

42. Hadjadj J, Yatim N, Barnabei L, et al.: Impaired type I interferon activity and exacerbated inflammatory responses in severe COVID-19 patients . Science. 2020;369(6504):718-724. DOI: 10.1126/science.abc6027

43. Netea MG, Giamarellos-Bourboulis EJ, Domınguez- Andrés J, al.: Trained Immunity: A tool for reducing susceptibility to and the severity of SARS-CoV-2 infection. Cell. 2020;181:969-977. DOI: 10.1016/j.cell.2020.04.042

44. Zhang Q, Bastard P, Liu Z, et al.: Inborn errors of type I IFN immunity in patients with life-threatening COVID-19. Science. 2020;370:eabd4570. DOI: 10.1126/science.abd4570

45. Moderbacher CR, Ramirez SI, Dan, JM, et al.: Antigen-specific adaptive immunity to SARS-CoV-2 in acute COVID-19 and associations with age and disease severity. Cell. 2020;183:996-1012. DOI: 10.1016/j.cell.2020.09.038

46. Sette A, Crotty S.: Adaptive immunity to SARS-CoV-2 and COVID-19. Cell. 2021;184, 1-20. DOI: 10.1016/j.cell.2021.01.007

47. Xiao Y, Lidsky PV, Shirogane Y, et al.: A defective viral genome strategy elicits broad protective immunity against respiratory viruses. Cell 2021;184:6037-6051. DOI: 10.1016/j.cell.2021.11.023

48. Oh JE, Song E, Moriyama M, et al.: Intranasal priming induces local lung-resident B cell populations that secrete protective mucosal antiviral IgA. Science Immunology 2021;6:eabj5129. DOI: 10.1126/sciimmunol.abj5129

49. Afkhami S, D’Agostino MR, Zhang A. et al.: Respiratory mucosal delivery of next-generation COVID-19 vaccine provides robust protection against both ancestral and variant strains of SARS-CoV-2. Cell 2022;185:896–915. DOI: 10.1016/j.cell.2022.02.005

50. Lobaina Y, Chen R, Suzarte E, et al.: The Nucleocapsid Protein of SARS-CoV-2, Combined with ODN-39M, Is a Potential Component for an Intranasal Bivalent Vaccine with Broader Functionality. Viruses. 2024;16:418. https://doi.org/10.3390/v16030418

51. Hooker BS, Miller NZ.: Analysis of health outcomes in vaccinated and unvaccinated children: Developmental delays, asthma, ear infections and gastrointestinal disorders. SAGE Open Med. 2020;8:1-11. doi: 10.1177/2050312120925344

52. Miller NZ.: Vaccines and sudden infant death: An analysis of the VAERS database 1990-2019 and review of the medical literature. Toxicol Rep. 2021;8:1324-1335. https://doi.org/10.1016/j.toxrep.2021.06.020

53. Nysetvold E, Mika T, Elison W, et al.: Infant vaccination does not predict increased infant mortality rate: correcting past misinformation [PREPRINT]. medRxiv. 2022;09:1-25. doi: https://doi.org/10.1101/2021.09.03.21263082

54. Bullmore, E. The Inflamed Mind: A radical new approach to depression. Simon & Schuster, London, New York, 2018.

55. Ader R, Cohen N.: Behaviourally conditioned immunsopuppression. Psychosom Med 1974;37:333-342. https://www.researchgate.net/profile/Nicholas-Cohen-4/publication/21993670_Behaviorally_Conditioned_Immunosuppression/links/626c54b8b277c02187d60ee3/Behaviorally-Conditioned-Immunosuppression.pdf

56. Gorczynski LV, Gorczynski CP, Terzioglu T, Gorczynski RM.: Pre- and Postnatal Influences of Neurohormonal Triggering and Behaviour on the Immune System of Offspring Adv Neuroimmune Biol. 2011;1:39-51. DOI: 10.3233/NIB-2011-004

57. Ader R, Felten DL, Cohen N.: Psychoneuroimmunology, 4th edition, 2 volumes, Academic Press/Elsevier, 2006. https://shop.elsevier.com/books/psychoneuroimmunology/ader/978-0-12-088576-3

58. Solek CM, Farooqi NAI, Brake N, et al.: Early Inflammation Dysregulates Neuronal Circuit Formation In Vivo via Upregulation of IL-1β. J Neuroscience. 2021;14:6353-6366. https://doi.org/10.1523/JNEUROSCI.2159-20.2021

59. Velloso FJ, Wadhwa A, Kumari E, et al.: Modestly Increasing Systemic Interleukin-6 Perinatally Disturbs Secondary Germinal Zone Neurogenesis and Gliogenesis and Produces Sociability Deficits. Brain, Behavior, and Immunity. 2022;101: 23-36. https://doi.org/10.1016/j.bbi.2021.12.015

60. Sager REH, Walker AK, Middleton FA, et al.: Changes in Cytokine and Cytokine Receptor Levels During Postnatal Development of the Human Dorsolateral Prefrontal Cortex. Brain, Behavior, and Immunity. 2023;111:186-201. https://doi.org/10.1016/j.bbi.2023.03.015

61. Boulanger LM.: Immune Proteins in Brain Development and Synaptic Plasticity. Neuron. 2009;64: 93-109. DOI: 10.1016/j.neuron.2009.09.001

62. Vainchtein ID, Chin G, Cho FS, et al.: Astrocyte-Derived Interleukin-33 Promotes Microglial Synapse Engulfment and Neural Circuit Development. Science. 2018;359: 1269-1273. DOI: 10.1126/science.aal3589

63. Barron JJ, Mroz NM, Taloma SE, et al.: Group 2 innate lymphoid cells promote inhibitory synapse development and social behavior. Science. 2024;386:eadi1025. DOI: 10.1126/science.adi1025

64. Krause RM.: The Search for Antibodies with Molecular Uniformity. Adv. Immunol. 1970;12:1-56. https://doi.org/10.1016/S0065-2776(08)60167-4

65. Silvers LE, Ellenberg SS, Wise R, et al.: The epidemiology of fatalities reported to the vaccine adverse event reporting system 1990-1997. Pharmacoepidemiol. Drug Saf 2001;10:279-285. https://doi.org/10.1002/pds.619

66. Moro PL, Jankosky C, Menschik D, et al.: Adverse events following Haemophilus influenzae Type B Vaccines in the Vaccine Adverse Event Reporting System, 1990-2013. J Pediatr 2015;166:992–997. https://doi.org/10.1016/j.jpeds.2014.12.014

67. Greenberg RG, Rountree W, Staat MA, et al.: Apnea After 2-Month Vaccinations in Hospitalized Preterm Infants: A Randomized Clinical Trial. JAMA pediatrics. 2025; doi:10.1001/jamapediatrics.2024.5311

68. Daniel O, Loughnan M, Quenby M, et al. Antibody in Breastmilk Following Pertussis Vaccination in Three-Time Windows in Pregnancy. Pediatr Infect Dis J. 2025;44(2S):S66-S69. doi:10.1097/INF.0000000000004696.

69.Kigel A, Vanetik S, Mangel L, et al. Maternal Immunization During the Second Trimester With BNT162b2 mRNA Vaccine Induces a Robust IgA Response in Human Milk: A Prospective Cohort Study. Am J Clin Nutrition. 2023;118(3):572-578. doi:10.1016/j.ajcnut.2023.07.013.

70. Bairoliya N, Fink G.: Causes of Death and Infant Mortality Rates Among Full-Term Births in the United States Between 2010 and 2012: An Observational Study. PLoS Medicine. 2018;15:e1002531. https://doi.org/10.1371/journal.pmed.1002531

71. Garfield E.: Bibliographic negligence: a serious transgression. The scientist. 1991;5(23):14. https://www.the-scientist.com/bibliographic-negligence-a-serious-transgression-60359

72. Ginsburg I.: “The Disregard Syndrome: A Menace to Honest Science?” The Scientist 2001 December. https://www.the-scientist.com/the-disregard-syndrome-a-menace-to-honest-science-53924