Involvement of hair follicles in skin tumorigenesis, skin homeostasis and wound healing

Main Article Content

Rishya Manikam Haymond Prasad Vivian Fernandez Ihab E. Ali Munandy Alagar Shamala Devi Sekaran

Abstract

Hair follicles play a crucial role in skin tumorigenesis, skin homeostasis, and wound healing. They contribute in several ways whereas in the bulge region epidermal stem cells give rise to both normal and malignant skin cells. If mutated, they can potentially lead to skin cancer as is seen in basal cell carcinoma and squamous cell carcinoma, common forms of skin cancer. Various growth factors, such as Wnt, Hedgehog, and Notch signalling pathways, regulate hair follicle development and cycling and dysregulation of these pathways can lead to abnormal cell proliferation and differentiation, contributing to cancer development in hair follicle cells. The stem cells within hair follicles contribute to the regeneration of both the epidermis (outer skin layer) and the hair follicle itself. The regenerative capacity of hair follicles can speed up wound healing by providing a pool of cells that can be recruited to the injured area to promote tissue repair. Hair follicles also modulate the inflammatory response during wound healing by secreting cytokines and growth factors, that orchestrate the healing process by regulating inflammation, angiogenesis, and collagen deposition, but in chronic wounds their role can be disrupted. When the hair follicles are damaged or not activated properly during the healing process, abnormal scarring or fibrosis can occur, leading to the formation of thick, fibrous scars rather than functional skin. The aim of this review is to provide an overview of the many roles played by the hair follicle and its associated structures as well as its close association with the skin.

Article Details

How to Cite
MANIKAM, Rishya et al. Involvement of hair follicles in skin tumorigenesis, skin homeostasis and wound healing. Medical Research Archives, [S.l.], v. 13, n. 4, apr. 2025. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/6411>. Date accessed: 15 may 2025. doi: https://doi.org/10.18103/mra.v13i4.6411.
Section
Research Articles

References

1 Paus, R., and Cotsarelis, G. The biology of hair follicles. 1999; N Engl J Med 341, 491.
2 Rezza, A., Sennett, R. & Rendl, M. Adult stem cell niches: cellular and molecular components. Curr. Top. Dev. Biol. 2014; 107, 333–372.
3 Schneider, M.R., Schmidt-Ullrich, R., and Paus, R. The hair follicle as a dynamic miniorgan. Curr Biol 2009; 19, R132–42.
4 Vatanashevanopakorn C, Sartyoungkul T. iPSC-based approach for human hair follicle regeneration. Front Cell Dev Biol. 2023 May 30;11:1149050. doi: 0.3389/fcell.2023.1149050.
5 Kligman, A.M. The human hair cycle. J Invest Dermatol 33, 307, 1959.
6 Cotsarelis, G., Sun, T.T., and Lavker, R.M. Label-retaining cells reside in the bulge area of pilosebaceous unit: implications for follicular stem cells, hair cycle, and skin carcinogenesis. Cell 1990; 61, 1329.
7 Morris, R.J., and Potten, C.S. Highly persistent labelretaining cells in the hair follicles of mice and their fate following induction of anagen. J Invest Dermatol 1999; 112, 470.
8 Morris, R.J., Liu, Y., Marles, L., et al. Capturing and profiling adult hair follicle stem cells. Nat Biotechnol 2004; 22, 411.
9. Jaks, V., Barker, N., Kasper, M., et al. Lgr5 marks cycling,yet long-lived, hair follicle stem cells. Nat Genet 2008; 40, 1291.
10. Blanpain, C., Lowry, W.E., Geoghegan, A., Polak, L., and Fuchs, E. Self-renewal, multipotency, and the existence of mtwo cell populations within an epithelial stem cell niche. Cell 2004; 118, 635.
11. Claudinot, S., Nicolas, M., Oshima, et al. Long-term renewal of hair follicles from clono enic multipotent stem cells. Proc Natl Acad Sci U S A 2005; 102, 14677.
12. Greco, V., Chen, T., Rendl, M., et al. A two-step mechanism for stem cell activation during hair regeneration. Cell Stem Cell 2009; 4, 155.
13. Taylor, G., Lehrer, M.S., Jensen, P.J., Sun, T.T., and Lavker, R.M. Involvement of follicular stem cells in forming not only the follicle but also the epidermis. Cell 2000; 102, 451.
14. Ito, M., Liu, Y., Yang, Z., et al. Stem cells in the hair follicle bulge contribute to wound repair but not to homeostasis of the epidermis. Nat Med 2005; 11, 1351.
15. Nishimura, E.K., Jordan, S.A., Oshima, H., et al. Dominant role of the niche in melanocyte stem- cell fate determination. Nature 2002; 416, 854.
16. Jensen, K.B., Collins, C.A., Nascimento, E., et al. Lrig1 expression defines a distinct multipotent stem cell population in mammalian epidermis. Cell Stem Cell 2009; 4, 427.
17. Snippert, H.J., Haegebarth, A., Kasper, M., et al. Lgr6 marks stem cells in the hair follicle that generate all cell lineages of the skin. Science 2010; 327, 1385.
18. Horsley, V., O’Carroll, D., Tooze, R., et al. Blimp1 defines a progenitor population that governs cellular input to the sebaceous gland. Cell 2006; 126, 597.
19. Biernaskie, J., Paris, M., Morozova, O., et al. SKPs derive from hair follicle precursors and exhibit properties of adult dermal stem cells. Cell Stem Cell 2009: 5, 610.
20. Liu, J.Y., Peng, H.F., Gopinath, S., Tian, J., and Andreadis, S.T. Derivation of functional smooth muscle cells from multipotent human hair follicle mesenchymal stem cells. Tissue Eng Part A 2010; 16, 2553.
21. Tan Y, Chang H. Hair Follicle Stem Cells: the Signaling Hub of the Skin. J Cell Immunol. 2024;6(1):7-14.
22. Lee, S.H.; Jeong, S.K.; Ahn, S.K. An update of the defensive barrier function of skin. Yonsei Med. J. 2006, 47, 293–306.
23. Eming, S.A.; Martin, P.; Tomic-Canic, M. Wound repair and regeneration: Mechanisms, signaling, and translation. Sci. Transl. Med. 2014, 6, doi:10.1126/scitranslmed.3009337.
24. Sen, C.K.; Gordillo, G.M.; Roy, S.; Kirsner, R.; Lambert, L.; Hunt, T.K.; Gottrup, F.; Gurtner, G.C.; Longaker, M.T. Human skin wounds: A major and snowballing threat to public health and the economy. Wound Repair Regen. 2009, 17, 763–771.
25. Bouwstra, J.A.; Ponec, M. The skin barrier in healthy and diseased state. Biochim. Biophys. Acta 2006, 1758, 2080–2095.
26. King, A.; Balaji, S.; Keswani, S.G.; Crombleholme, T.M. The role of stem cells in wound angiogenesis. Adv. Wound Care 2014, 3, 614–625
27. Leung, Y.; Kandyba, E.; Chen, Y.-B.; Ruffins, S.; Chuong, C.-M.; Kobielak, K. Bifunctional Ectodermal Stem Cells around the Nail Display Dual Fate Homeostasis and Adaptive Wounding Response toward Nail Regeneration. Proc. Natl. Acad. Sci. USA 2014, 111, 15114–15119.
28. Blanpain, C.; Fuchs, E. Epidermal Homeostasis: A Balancing Act of Stem Cells in the Skin. Nat. Rev. Mol. Cell Biol. 2009, 10, 207–217.
29. Seeger, M.A.; Paller, A.S. The Roles of Growth Factors in Keratinocyte Migration. Adv. Wound Care 2015, 4, 213–224.
30. Blanpain, C.; Fuchs, E. Epidermal Stem Cells of the Skin. Ann. Rev. Cell Dev. Biol. 2006, 22, 339–373.
31. Fuchs, E. Skin Stem Cells: Rising to the Surface. J. Cell Biol. 2008, 180, 273–284.
32. Racila, D.; Bickenbach, J.R. Are Epidermal Stem Cells Unique with respect to Aging? Aging 2009, 1, 746–750.
33. Giangreco, A.; Qin, M.; Pintar, J.E.; Watt, F.M. Epidermal Stem Cells Are Retained in Vivo throughout Skin Aging. Aging Cell 2008, 7, 250–259.
34. Soteriou, D.; Kostic, L.; Sedov, E.; Yosefzon, Y.; Steller, H.; Fuchs, Y. Isolating Hair Follicle Stem Cells and Epidermal Keratinocytes from Dorsal Mouse Skin. J. Vis. Exp. 2016, 110, 53931.
35. Firth, A.L.; Yuan, J.X.-J. Identification of Functional Progenitor Cells in the Pulmonary Vasculature. Pulm. Circ. 2012, 2, 84–100.
36. Blanpain, C.; Fuchs, E. Epidermal Homeostasis: A Balancing Act of Stem Cells in the Skin. Nat. Rev. Mol. Cell Biol. 2009, 10, 207–217.
37. Zakrzewski, W.; Dobrzy ´nski, M.; Szymonowicz, M.; Rybak, Z. Stem Cells: Past, Present, and Future. Stem Cell Res. Ther. 2019, 10, 68.
38. Vapniarsky, N.; Arzi, B.; Hu, J.C.; Nolta, J.A.; Athanasiou, K.A. Concise Review: Human Dermis as an Autologous Source of Stem Cells for Tissue Engineering and Regenerative Medicine: Dermis Stem Cells for Tissue Regeneration. Stem Cells Transl. Med. 2015, 4, 1187–1198.
39. Logan, C.Y.; Nusse, R. The wnt Signaling Pathway in Development and Disease. Ann. Rev. Cell Dev. Biol. 2004; 20, 781–810.
40. Nusse, R. Wnt Signaling and Stem Cell Control. Cell Res. 2008, 18, 523–527.
41. Clevers, H. Wnt/β-Catenin Signaling in Development and Disease. Cell 2006; 127, 469–480.
42. Holland, J.D.; Klaus, A.; Garratt, A.N.; Birchmeier, W. Wnt Signaling in Stem and Cancer Stem Cells. Curr. Opin. Cell Biol. 2013, 25, 254–264.
43. Nusse, R.; Clevers, H. Wnt/β-Catenin Signaling, Disease, and Emerging Therapeutic Modalities. Cell 2017; 169, 985–999.
44. van Amerongen, R.; Nusse, R. Towards an Integrated View of Wnt Signaling in Development. Development 2009; 136, 3205–3214.
45. Nelson, W.J. Convergence of Wnt—Catenin, and Cadherin Pathways. Science 2004, 303, 1483–1487.
46. Wehrli, M.; Dougan, S.T.; Caldwell, K.; O’Keefe, L.; Schwartz, S.; Vaizel-Ohayon, D.; Schejter, E.; Tomlinson, A.; DiNardo, S. Arrow Encodes an LDL-Receptor-Related Protein Essential for Wingless Signalling. Nature 2000, 407, 527–530.
47. Tamai, K.; Semenov, M.; Kato, Y.; Spokony, R.; Liu, C.; Katsuyama, Y.; Hess, F.; Saint-Jeannet, J.-P.; He, X. LDL-Receptor-Related Proteins in Wnt Signal Transduction. Nature 2000, 407, 530–535.
48. Wang, Y. The Role of Frizzled3 and Frizzled6 in Neural Tube Closure and in the Planar Polarity of Inner-Ear Sensory Hair Cells. J. Neurosci. 2006, 26, 2147–2156.
49. Gordon, M.D.; Nusse, R. Wnt Signaling: Multiple Pathways, Multiple Receptors, and Multiple Transcription Factors. J. Biol. Chem. 2006, 281, 22429–22433.
50. Wodarz A, Nusse R. Mechanisms of Wnt signaling in development. Annual review of cell and developmental biology. 1998; Nov;14(1):59-88.
51. Bejsovec A. Wnt signaling: an embarrassment of receptors. Current Biology. 2000 Dec 14;10(24):R919-22
52. Rahman MS, Akhtar N, Jamil HM, Banik RS, Asaduzzaman SM. TGF-β/BMP signaling and other molecular events: regulation of osteoblastogenesis and bone formation. Bone research. 2015 Apr 14;3(1):1-20.
53. Wu M, Chen G, Li YP. TGF-β and BMP signaling in osteoblast, skeletal development, and bone formation, homeostasis and disease. Bone research. 2016 Apr 26;4(1):1-21
54. Zhang W, Wang N, Zhang T, Wang M, Ge W, Wang X. Roles of melatonin in goat hair follicle stem cell proliferation and pluripotency through regulating the Wnt signaling pathway. Frontiers in Cell and Developmental Biology. 2021 Jun 4;9:686805
55. Aubin-Houzelstein G. Notch signaling and the developing hair follicle. Notch Signaling in Embryology and Cancer. 2012 Jan 1:142-60.
56. Nusse R, Clevers H. Wnt/β-catenin signaling, disease, and emerging therapeutic modalities. Cell. 2017 Jun 1;169(6):985-99.
57. Yamamoto N, Tanigaki K, Han H, Hiai H, Honjo T. Notch/RBP-J signaling regulates epidermis/hair fate determination of hair follicular stem cells. Current Biology. 2003 Feb 18;13(4):333-8.
58. Huang C, Du Y, Nabzdyk CS, Ogawa R, Koyama T, Orgill DP, et al. Regeneration of hair and other skin appendages: A microenvironment‐centric view. Wound Repair and Regeneration. 2016 Sep;24(5):759-66.
59. Brownell I, Guevara E, Bai CB, Loomis CA, Joyner AL. Nerve derived sonic hedgehog defines a niche for hair follicle stem cells capable of becoming epidermal stem cells. Cell stem cell. 2011 May 6;8(5):552-65.
60. Gat U, DasGupta R, Degenstein L, Fuchs E. De novo hair follicle morphogenesis and hair tumors in mice expressing a truncated β-catenin in skin. Cell. 1998 Nov 25;95(5):605-14
61. Skobe M, Detmar M. Structure, function, and molecular control of the skin lymphatic system. Journal of Investigative Dermatology Symposium Proceedings. 2000 Dec 1;5(1):14-19.
62. Hampton HR, Chtanova T. Lymphatic migration of immune cells. Frontiers in immunology. 2019 May 28;10:1168
63. Martínez-Martínez E, Galván-Hernández CI, Toscano-Márquez B, Gutiérrez-Ospina G. Modulatory role of sensory innervation on hair follicle stem cell progeny during wound healing of the rat skin. PloS One. 2012 May 4;7(5):e36421.
64. Fan SM, Chang YT, Chen CL, Wang WH, Pan MK, Chen WP, et al. External light activates hair follicle stem cells through eyes via an ipRGC–SCN–sympathetic neural pathway. Proceedings of the National Academy of Sciences. 2018 Jul 17;115(29):E6880-9.
65. Shwartz Y, Gonzalez-Celeiro M, Chen CL, Pasolli HA, Sheu SH, Fan SM, et al. Cell types promoting goosebumps form a niche to regulate hair follicle stem cells. Cell. 2020 Aug 6;182(3):578-93.
66. Frantz C, Stewart KM, Weaver VM. The extracellular matrix at a glance. Journal of Cell Science. 2010 Dec 15;123(24):4195-200.
67. Chermnykh E, Kalabusheva E, Vorotelyak E. Extracellular matrix as a regulator of epidermal stem cell fate. International Journal of Molecular Sciences. 2018 Mar 27;19(4):1003.
68. Miyachi K, Yamada T, Kawagishi‐Hotta M, Hasebe Y, Date Y, Hasegawa S, et al. Extracellular proteoglycan decorin maintains human hair follicle stem cells. The Journal of Dermatology. 2018 Dec;45(12):1403-10.
69. Tanimura S, Tadokoro Y, Inomata K, Binh NT, Nishie W, Yamazaki S, et al. Hair follicle stem cells provide a functional niche for melanocyte stem cells. Cell Stem Cell. 2011 Feb 4;8(2):177-87.
70. Rahmani W, Sinha S, Biernaskie J. Immune modulation of hair follicle regeneration. NPJ Regenerative Medicine. 2020 May 11;5(1):9.
71. Chacón‐Martínez CA, Klose M, Niemann C, Glauche I, Wickström SA. Hair follicle stem cell cultures reveal self‐organizing plasticity of stem cells and their progeny. The EMBO Journal. 2017 Jan 17;36(2):151-64.
72. Tumbar T, Guasch G, Greco V, Blanpain C, Lowry WE, Rendl M, et al. Defining the epithelial stem cell niche in skin. Science. 2004 Jan 16;303(5656):359-63.
73. Gonzales, K.A.U.; Fuchs, E. Skin and Its Regenerative Powers: An Alliance between Stem Cells and Their Niche. Dev. Cell 2017, 43, 387–401.
74. Psarras, S.; Beis, D.; Nikouli, S.; Tsikitis, M.; Capetanaki, Y. Three in a Box: Understanding Cardiomyocyte, Fibroblast, and Innate Immune Cell Interactions to Orchestrate Cardiac Repair Processes. Front. Cardiovasc. Med. 2019, 6, 32.
75. Eming, S.A.; Martin, P.; Tomic-Canic, M. Wound repair and regeneration: Mechanisms, signaling, and translation. Sci. Transl. Med. 2014, 6, doi:10.1126/scitranslmed.3009337.
76. Sen, C.K.; Gordillo, G.M.; Roy, S.; Kirsner, R.; Lambert, L.; Hunt, T.K.; Gottrup, F.; Gurtner, G.C.; Longaker, M.T. Human skin wounds: A major and snowballing threat to public health and the economy. Wound Repair Regen. 2009, 17, 763–771.
77. King, A.; Balaji, S.; Keswani, S.G.; Crombleholme, T.M. The role of stem cells in wound angiogenesis. Adv. Wound Care 2014, 3, 614–625.
78. Boulton, A.J.; Vileikyte, L.; Ragnarson-Tennvall, G.; Apelqvist, J. The global burden of diabetic foot disease. Lancet 2005, 366, 1719–1724.
79. Richardson, R.; Slanchev, K.; Kraus, C.; Knyphausen, P.; Eming, S.; Hammerschmidt, M. Adult Zebrafish as a Model System for Cutaneous Wound-Healing Research. J. Investig. Dermatol. 2013, 133, 1655–1665.
80. Seifert, A.W.; Monaghan, J.R.; Voss, S.R.; Maden, M. Skin Regeneration in Adult Axolotls: A Blueprint for Scar-Free Healing in Vertebrates. PLoS ONE 2012, 7, e32875.
81. Mascré, G.; Dekoninck, S.; Drogat, B.; Youssef, K.K.; Brohée, S.; Sotiropoulou, P.A.; Simons, B.D.; Blanpain, C. Distinct Contribution of Stem and Progenitor Cells to Epidermal Maintenance. Nature 2012, 489, 257–262.
82. Levy, V.; Lindon, C.; Zheng, Y.; Harfe, B.D.; Morgan, B.A. Epidermal Stem Cells Arise from the Hair Follicle after Wounding. FASEB J. 2007, 21, 1358–1366.
83. Ito, M.; Liu, Y.; Yang, Z.; Nguyen, J.; Liang, F.; Morris, R.J.; Cotsarelis, G. Stem Cells in the Hair Follicle Bulge Contribute to Wound Repair but Not to Homeostasis of the Epidermis. Nat. Med. 2005, 11, 1351–1354.
84. Levy, V.; Lindon, C.; Harfe, B.D.; Morgan, B.A. Distinct Stem Cell Populations Regenerate the Follicle and Interfollicular Epidermis. Dev. Cell 2005, 9, 855–861.
85. Moore SP, Antoni S, Colquhoun A, Healy B, Ellison-Loschmann L, Potter JD, et al. Cancer incidence in indigenous people in Australia, New Zealand, Canada, and the USA: a comparative population based study. Lancet Oncol. 2015; 16:1483–92.
86. Narayanan DL, Saladi RN, Fox JL. Ultraviolet radiation and skin cancer. Int J Dermatol. 2010; 49:978–86.
87. Menaa, F.; Houben, R.; Eyrich, M.; Broecker, E.B.; Becker, J.C.; Wischhusen, J. Stem cells, melanoma and cancer stem cells: The good, the bad and the evil? G. Ital. Dermatol. Venereol. 2009, 144, 287–296.
88. Rognoni E, Watt FM. Skin Cell Heterogeneity in Development, Wound Healing, and Cancer. Trends Cell Biol. 2018 Sep;28(9):709-722. doi: 10.1016/j.tcb.2018.05.002. Epub 2018 May 25.
89. . Sánchez-Danés, A. et al. Defining the clonal dynamics leading to mouse skin tumour initiation. Nature 2016; 536, 298–303.
90. Youssef, K.K. et al. Identification of the cell lineage at the origin of basal cell carcinoma. Nat. Cell Biol. 2010; 12, 299–305.
91. Larsimont, J.C. et al. Sox9 controls self-renewal of oncogene targeted cells and links tumor initiation and invasion. Cell Stem Cell 2015; 17, 60–73.
92. Lapouge, G. et al. Identifying the cellular origin of squamous skin tumors. Proc. Natl. Acad. Sci. 108, 7431–7436 Nat. Cell Biol. 2011; 19, 603–613.
93. Ge, Y. et al. Stem cell lineage infidelity drives wound repair and cancer. Cell 2017; 169, 636–650 e14.
94. Latil, M. et al. Cell-type-specific chromatin states differentially prime squamous cell carcinoma tumor-initiating cells for epithelial to mesenchymal transition. Cell Stem Cell 2017; 20, 191–204 e5.
95. Deschene, E.R. et al. b-Catenin activation regulates tissue growth non-cell autonomously in the hair stem cell niche. Science 2014; 343, 1353–1356.
96. Brown, S. et al. Correction of aberrant growth preserves tissue homeostasis. Nature 2017; 548, 334–337.
97. Kalluri, R. and Zeisberg, M. Fibroblasts in cancer. Nat. Rev. Cancer 2006; 6, 392–401.
98. Madar, S. et al. “Cancer associated fibroblasts” – more than meets the eye. Trends Mol. Med. 2013; 19, 447–453.
99. Rinkevich, Y. et al. Identification and isolation of a dermal lineage with intrinsic fibrogenic potential. Science 2015; 348, aaa2151
100. White RA, Neiman JM, Reddi A, Han G, Birlea S, Mitra D, et al. Epithelial stem cell mutations that promote squamous cell carcinoma metastasis. J Clin Invest. 2013; 123:4390–404.
101. Quintana E, Shackleton M, Sabel MS, Fullen DR, Johnson TM, Morrison SJ. Efficient tumour formation by single human melanoma cells. Nature. 2008; 456:593–8.
102. Song J, Chang I, Chen Z, Kang M, Wang CY. Characterization of side populations in HNSCC: highly invasive, chemoresistant and abnormal Wnt signaling. PLoS One. 2010; 5:e11456.
103. Trempus CS, Morris RJ, Bortner CD, Cotsarelis G, Faircloth RS, Reece JM, et al. Enrichment for living murine keratinocytes from the hair follicle bulge with the cell surface marker CD34. J Invest Dermatol. 2003; 120:501–11.
104. Ohyama M, Terunuma A, Tock CL, Radonovich MF, Pise-Masison CA, Hopping SB, et al. Characterization and isolation of stem cell-enriched human hair follicle bulge cells. J Clin Invest. 2006; 116:249–60.
105. Jiang S, Zhao L, Purandare B, Hantash BM. Differential expression of stem cell markers in human follicular bulge and interfollicular epidermal compartments. Histochem Cell Biol. 2010; 133:455–65.
106. Lapouge G, Beck B, Nassar D, Dubois C, Dekoninck S, Blanpain C. Skin squamous cell carcinoma propagating cells increase with tumour progression and invasiveness. EMBO J. 2012; 31:4563–75.
107. Yin AH, Miraglia S, Zanjani ED, Almeida-Porada G, Ogawa M, Leary AG, et al. AC133, a novel marker for human hematopoietic stem and progenitor cells. Blood. 1997; 90:5002–12.
108. Goodell MA, Brose K, Paradis G, Conner AS, Mulligan RC. Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J Exp Med. 1996; 183:1797–806.
109. Zhang P, Zhang Y, Mao L, Zhang Z, Chen W. Side population in oral squamous cell carcinoma possesses tumor stem cell phenotypes. Cancer Lett. 2009; 277:227–34
110. Wang GY, Wang J, Mancianti ML, Epstein EH Jr. Basal cell carcinomas arise from hair follicle stem cells in Ptch1(+/−) mice. Cancer Cell. 2011; 19:114–24.
111. Adhikary G, Grun D, Balasubramanian S, Kerr C, Huang JM, Eckert RL. Survival of skin cancer stem cells requires the Ezh2 polycomb group protein. Carcinogenesis. 2015; 36:800–10.
112. Banerjee R, Mani RS, Russo N, Scanlon CS, Tsodikov A, Jing X, et al. The tumor suppressor gene rap1GAP is silenced by miR-101-mediated EZH2 overexpression in invasive squamous cell carcinoma. Oncogene. 2011; 30:4339–49.
113. Wang D, Zhang Z, O’Loughlin E, Wang L, Fan X, Lai EC, et al. MicroRNA-205 controls neonatal expansion of skin stem cells by modulating the PI(3)K pathway. Nat Cell Biol. 2013; 15:1153–63.
114. Riemondy, K., Wang, XJ., Torchia, EC., Roop, DR., Yi, R. MicroRNA-203 represses selection and expansion of oncogenic Hras transformed tumor initiating cells [e-pub ahead of print]. Elife. 2015. http://dx.doi.org/10.7554/eLife.07004
115. Coller HA, Sang L, Roberts JM. A new description of cellular quiescence. PLoS Biol. 2006; 4:e83.
116. Sang L, Coller HA, Roberts JM. Control of the reversibility of cellular quiescence by the transcriptional repressor HES1. Science. 2008; 321:1095–100.
117. Moore, N., Lyle, S. Quiescent, slow-cycling stem cell populations in cancer: a review of the evidence and discussion of significance [e-pub ahead of print]. J Oncol. 2011. http://dx.doi.org/10.1155/2011/396076
118. Ahsan A, Hiniker SM, Davis MA, Lawrence TS, Nyati MK. Role of cell cycle in epidermal growth factor receptor inhibitor-mediated radiosensitization. Cancer Res. 2009; 69:5108–14.
119. Masunaga S, Ono K, Abe M. A method for the selective measurement of the radiosensitivity of quiescent cells in solid tumors—combination of immunofluorescence staining to BrdU and micronucleus assay. Radiat Res. 1991; 125:243–7.
120. Oshimori N, Oristian D, Fuchs E. TGF-beta promotes heterogeneity and drug resistance in squamous cell carcinoma. Cell. 2015; 160:963–76.
121. Kawakami, A.; Fisher, D.E. The master role of microphthalmia-associated transcription factor in melanocyte and melanoma biology. Lab. Investig. 2017, 97, 649–656.
122. Loercher, A.E.; Tank, E.M.; Delston, R.B.; Harbour, J.W. MITF links differentiation with cell cycle arrest in melanocytes bytranscriptional activation of INK4A. J. Cell Biol. 2005, 168, 35–40.
123. Dilshat, R.; Fock, V.; Kenny, C.; Gerritsen, I.; Lasseur, R.M.J.; Travnickova, J.; Eichhoff, O.M.; Cerny, P.; Möller, K.; Sigurbjörnsdóttir, S.; et al. MITF reprograms the extracellular matrix and focal adhesion in melanoma. eLife 2021, 10, e63093.
124. Möller, K.; Sigurbjornsdottir, S.; Arnthorsson, A.O.; Pogenberg, V.; Dilshat, R.; Fock, V.; Brynjolfsdottir, S.H.; Bindesboll, C.;Bessadottir, M.; Ogmundsdottir, H.M.; et al. MITF has a central role in regulating starvation-induced autophagy in melanoma.Sci. Rep. 2019, 9, 1055.
125. Leclerc, J.; Ballotti, R.; Bertolotto, C. Pathways from senescence to melanoma: Focus on MITF sumoylation. Oncogene 2017, 36,6659–6667.
126. Binet, R.; Lambert, J.P.; Tomkova, M.; Tischfield, S.; Baggiolini, A.; Picaud, S.; Sarkar, S.; Louphrasitthiphol, P.; Dias, D.;Carreira, S.; et al. DNA damage-induced interaction between a lineage addiction oncogenic transcription factor and the MRN complex shapes a tissue-specific DNA Damage Response and cancer predisposition. bioRxiv 2023.
127. Sensi, M.; Nicolini, G.; Petti, C.; Bersani, I.; Lozupone, F.; Molla, A.; Vegetti, C.; Nonaka, D.; Mortarini, R.; Parmiani, G.; et al.Mutually exclusive NRASQ61R and BRAFV600E mutations at the single-cell level in the same human melanoma. Oncogene 2006, 25, 3357–3364.
128. Wilmott, J.S.; Tembe, V.; Howle, J.R.; Sharma, R.; Thompson, J.F.; Rizos, H.; Lo, R.S.; Kefford, R.F.; Scolyer, R.A.; Long, G.V. Intratumoral molecular heterogeneity in a BRAF-mutant, BRAF inhibitor-resistant melanoma: A case illustrating the challenges for personalized medicine. Mol. Cancer Ther. 2012, 11, 2704–2708.
129. Rastetter, M.; Schagdarsurengin, U.; Lahtz, C.; Fiedler, E.; Marsch, W.C.; Dammann, R.; Helmbold, P. Frequent intra-tumoural heterogeneity of promoter hypermethylation in malignant melanoma. Histol. Histopathol. 2007, 22, 1005–1015.
130. da Silva-Diz, V.; Lorenzo-Sanz, L.; Bernat-Peguera, A.; Lopez-Cerda, M.; Muñoz, P. Cancer cell plasticity: Impact on tumorprogression and therapy response. Semin. Cancer Biol. 2018, 53, 48–58.
131. McKenna, S.; García-Gutiérrez, L. Resistance to Targeted Therapy and RASSF1A Loss in Melanoma: What Are We Missing? Int. J.Mol. Sci. 2021, 22, 5115.
132. Wiggans, M.; Pearson, B.J. One stem cell program to rule them all? FEBS J. 2021, 288, 3394–3406.
133. Vidal, A.; Redmer, T. Decoding the Role of CD271 in Melanoma. Cancers 2020, 12, 2460.
134. Restivo, G.; Diener, J.; Cheng, P.F.; Kiowski, G.; Bonalli, M.; Biedermann, T.; Reichmann, E.; Levesque, M.P.; Dummer, R.; Sommer,L. low neurotrophin receptor CD271 regulates phenotype switching in melanoma. Nat. Commun. 2017, 8, 1988.
135. Radke, J.; Roßner, F.; Redmer, T. CD271 determines migratory properties of melanoma cells. Sci. Rep. 2017, 7, 9834.
136. Guo, R.; Fierro-Fine, A.; Goddard, L.; Russell, M.; Chen, J.; Liu, C.Z.; Fung, K.M.; Hassell, L.A. Increased expression of melanoma stem cell marker CD271 in metastatic melanoma to the brain. Int. J. Clin. Exp. Pathol. 2014, 7, 8947–8951.
137. Parmiani, G. Melanoma Cancer Stem Cells: Markers and Functions. Cancers 2016, 8, 34.
138. Perego, M.; Tortoreto, M.; Tragni, G.; Mariani, L.; Deho, P.; Carbone, A.; Santinami, M.; Patuzzo, R.; Mina, P.D.; Villa, A.; et al. Heterogeneous phenotype of human melanoma cells with in vitro and in vivo features of tumor-initiating cells. J. Investig. Dermatol. 2010, 130, 1877–1886.
139. Kumar, V.; Vashishta, M.; Kong, L.; Wu, X.; Lu, J.J.; Guha, C.; Dwarakanath, B.S. The Role of Notch, Hedgehog, and Wnt Signaling Pathways in the Resistance of Tumors to Anticancer Therapies. Front. Cell Dev. Biol. 2021, 9, 650772.
140. Takebe, N.; Miele, L.; Harris, P.J.; Jeong, W.; Bando, H.; Kahn, M.; Yang, S.X.; Ivy, S.P. Targeting Notch, Hedgehog, and Wnt pathways in cancer stem cells: Clinical update. Nat. Rev. Clin. Oncol. 2015, 12, 445–464.
141. Nakahata, K.; Uehara, S.; Nishikawa, S.; Kawatsu, M.; Zenitani, M.; Oue, T.; Okuyama, H. Aldehyde Dehydrogenase 1 (ALDH1) Is a Potential Marker for Cancer Stem Cells in Embryonal Rhabdomyosarcoma. PLoS ONE 2015, 10, e0125454.
142. Simbulan-Rosenthal, C.M.; Dougherty, R.; Vakili, S.; Ferraro, A.M.; Kuo, L.W.; Alobaidi, R.; Aljehane, L.; Gaur, A.; Sykora, P.; Glasgow, E.; et al. CRISPR-Cas9 Knockdown and Induced Expression of CD133 Reveal Essential Roles in Melanoma Invasion and Metastasis. Cancers 2019, 11, 1490.
143. González-Herrero, I.; Romero-Camarero, I.; Cañueto, J.; Cardeñoso-Álvarez, E.; Fernández-López, E.; Pérez-Losada, J.; SánchezGarcía, I.; Román-Curto, C. CD133+ cell content correlates with tumour growth in melanomas from skin with chronic sun-induced damage. Br. J. Dermatol. 2013, 169, 830–837.
144. Madjd, Z.; Erfani, E.; Gheytanchi, E.; Moradi-Lakeh, M.; Shariftabrizi, A.; Asadi-Lari, M. Expression of CD133 cancer stem cell marker in melanoma: A systematic review and meta-analysis. Int. J. Biol. Markers 2016, 31, e118–e125.
145. Liou, G.Y. CD133 as a regulator of cancer metastasis through the cancer stem cells. Int. J. Biochem. Cell Biol. 2019, 106, 1–7.
146. Tseng, L.M.; Huang, P.I.; Chen, Y.R.; Chen, Y.C.; Chou, Y.C.; Chen, Y.W.; Chang, Y.L.; Hsu, H.S.; Lan, Y.T.; Chen, K.H.; et al. Targeting signal transducer and activator of transcription 3 pathway by cucurbitacin I diminishes self-renewing and radiochemoresistant abilities in thyroid cancer-derived CD133+ cells. J. Pharmacol. Exp. Ther. 2012, 341, 410–423.
147. Jamal, S.M.E.; Alamodi, A.; Wahl, R.U.; Grada, Z.; Shareef, M.A.; Hassan, S.Y.; Murad, F.; Hassan, S.L.; Santourlidis, S.; Gomez, C.R.; et al. Melanoma stem cell maintenance and chemo-resistance are mediated by CD133 signal to PI3K-dependent pathways. Oncogene 2020, 39, 5468–5478.
148. Passarelli, A.; Mannavola, F.; Stucci, L.S.; Tucci, M.; Silvestris, F. Immune system and melanoma biology: A balance between immunosurveillance and immune escape. Oncotarget 2017, 8, 106132–106142.