Advancements in molecular techniques impacting the diagnostic landscape for dengue in the near future

Main Article Content

Shamala Devi Sekaran Rafeah Pakri Mohamed Janaki Venkatasalam Vivian Fernandez Ihab Ali Munandy Alagar Rishya Manikam Chandramathi Samudi Raju

Abstract

Denue viral epidemics have escalated worldwide, with over 100 million infections occurring annually. The spread of the mosquito vector is supported by the increase in urbanization and climate change with models predicting potential impact of 6.1 billion people by 2080. Dengue is a mosquito borne viral infection caused by dengue virus, the genus of which contains four serotypes. While this virus causes mild infections with flu-like illness, it can occasionally develop into a potential lethal complication called severe dengue. There is currently no specific treatment but early detection and access to proper medical care can lower the fatality rates to below 1%. Currently prevention and control depend on stringent effective vector control measures with the help of community participation. Out true understanding of the circulation, transmission dynamics, immunological interactions, and association of genetic and antigenic diversity with severity remains limited. Thus the approach to investigate dengue virus epidemiology, immunological interactions, and genetic diversity using highly specific diagnostic and pathogen sequencing methods is crucial and requires developing integrated, targeted and effective intervention strategies. This paper explores current and emerging molecular methods and their anticipated impact on the diagnostic landscape for dengue in the near future.

Article Details

How to Cite
SEKARAN, Shamala Devi et al. Advancements in molecular techniques impacting the diagnostic landscape for dengue in the near future. Medical Research Archives, [S.l.], v. 13, n. 5, may 2025. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/6586>. Date accessed: 23 june 2025. doi: https://doi.org/10.18103/mra.v13i5.6586.
Section
Research Articles

References

1. https://www.ecdc.europa.eu/en/dengue-monthly

2. Khan S, Elcheikhali M, Leduc A, Huffman R, Derks J, Franks A & Slavov N, Inferring post-transcriptional regulation within and across cell types in human testis, bioRxiv, 2024

3. Silburn A, Arndell J. The impact of dengue viruses: Surveillance, response, and public health implications in Queensland, Australia. Public Health Pract (Oxf). 2024 Jul 4;8:100529. doi: 10.1016/j.pu hip.2024.100529. PMID: 39071864; PMCID: PMC11 282963.

4. Yadouleton A, Hounkanrin G, Tchibozo C, Bialonski A, Schmidt-Chanasit J, Jöst H. First Detection of the Invasive Mosquito Vector Aedes albopictus (Diptera: Culicidae) in Benin, West Africa, 2021. J Med Entomol. 2022 May 11;59(3):1090-1094. doi: 10.1093/jme/tjac039. PMID: 35389485; PMCID: PMC9113111.

5. Palanichamy Kala, M., St. John, A.L. & Rathore, A.P.S. Dengue: Update on Clinically Relevant Therapeutic Strategies and Vaccines. Curr Treat Options Infect Dis 15, 27–52 (2023). https://doi.org/10.1007/s40506-023-00263-w

6. Elisa Guzmán, Yu Yan, Peter Müller, Justin Amengual, Mu-Ping Nieh and Samuel W. Thomas, III. 2025. . J. Mater. Chem. C, 2025,13, 954-962

7. Medina, F., Medina, J. F., Colón, C., Vergne, E., Santiago, G. A., & Muñoz‐Jordán, J. L. (2012). Dengue Virus: Isolation, Propagation, Quantification, and Storage. Current Protocols in Microbiology, 27(1). https://doi.org/10.1002/9780471729259.mc15d02s27

8. Prescott, J., Feldmann, H., & Safronetz, D. (2017). Amending Koch’s postulates for viral disease: When “growth in pure culture” leads to a loss of virulence. Antiviral Research, 137, 1–5. https://doi.org/10.1016/j.antiviral.2016.11.002

9. Salles, T. S., da Encarnação Sá-Guimarães, T., de Alvarenga, E. S. L., Guimarães-Ribeiro, V., de Meneses, M. D. F., de Castro-Salles, P. F., … Moreira, M. F. (2018). History, epidemiology and diagnostics of dengue in the American and Brazilian contexts: a review. Parasites & Vectors, 11 (1), 264. https://doi.org/10.1186/s13071-018-2830-8

10. World Health Organization. (2009). LABORATORY DIAGNOSIS AND DIAGNOSTIC TESTS. In Dengue: Guidelines for Diagnosis, Treatment, Prevention and Control: New Edition.

11. Chong, Z. L., Sekaran, S. D., Soe, H. J., Peramalah, D., Rampal, S., & Ng, C.-W. (2020). Diagnostic accuracy and utility of three dengue diagnostic tests for the diagnosis of acute dengue infection in Malaysia. BMC Infectious Diseases, 20(1), 210. https://doi.org/10.1186/s12879-020-4911-5

12. Guzman, M. G., Jaenisch, T., Gaczkowski, R., Ty Hang, V. T., Sekaran, S. D., Kroeger, A., … Simmons, C. P. (2010). Multi-Country Evaluation of the Sensitivity and Specificity of Two Commercially-Available NS1 ELISA Assays for Dengue Diagnosis. PLoS Neglected Tropical Diseases, 4(8), e811. https://doi.org/10.1371/journal.pntd.0000811

13. Hunsperger, E. A., Yoksan, S., Buchy, P., Nguyen, V. C., Sekaran, S. D., Enria, D. A., … Peeling, R. W. (2009). Evaluation of Commercially Available Anti–Dengue Virus Immunoglobulin M Tests. Emerging Infectious Diseases, 15(3), 436–440. https://doi.org/10.3201/eid1503.080923

14. Peeling, R. W., Artsob, H., Pelegrino, J. L., Buchy, P., Cardosa, M. J., Devi, S., … Yoksan, S. (2010). Evaluation of diagnostic tests: dengue. Nature Reviews Microbiology, 8(S12), S30–S37. https://doi.org/10.1038/nrmicro2459S. D. Sekaran, Lan, & Subramaniam, 2018;

15. Tricou, V., Vu, H. T., Quynh, N. V., Nguyen, C. V., Tran, H. T., Farrar, J., … Simmons, C. P. (2010). Comparison of two dengue NS1 rapid tests for sensitivity, specificity and relationship to viraemia and antibody responses. BMC Infectious Diseases, 10(1), 142. https://doi.org/10.1186/1471-2334-10-142

16. Wang, S. M., & Sekaran, S. D. (2010a). Early Diagnosis of Dengue Infection Using a Commercial Dengue Duo Rapid Test Kit for the Detection of NS1, IGM, and IGG. The American Journal of Tropical Medicine and Hygiene, 83(3), 690–695. https://doi.org/10.4269/ajtmh.2010.10-0117

17. Wang, S. M., & Sekaran, S. D. (2010b). Evaluation of a Commercial SD Dengue Virus NS1 Antigen Capture Enzyme-Linked Immunosorbent Assay Kit for Early Diagnosis of Dengue Virus Infection. Journal of Clinical Microbiology, 48(8), 2793–2797. https://doi.org/10.1128/JCM.02142-09

18. Schilling, S., Ludolfs, D., Van An, L., & Schmitz, H. (2004). Laboratory diagnosis of primary and secondary dengue infection. Journal of Clinical Virology, 31(3), 179–184. https://doi.org/10.1016/j.jcv.2004.03.020

19. Sekaran, Shamala Devi, & Soe, H. J. (2017). Issues in contemporary and potential future molecular diagnostics for dengue. Expert Review of Molecular Diagnostics, 17(3), 217–223.
https://doi.org/10.1080/14737159.2017.1275963

20. Sekaran, S. D. ., Ew, C. L., Subramaniam, G., & Kanthesh, B. M. (2009). Sensitivity of dengue virus NS-1detection in primary and secondary infections. African Journal of Microbiology Research. https://doi.org/10.5897/AJMR.9000647

21. Sekaran, Shamala Devi, & Artsob, H. (2007). Molecular diagnostics for the detection of human flavivirus infections. Expert Opinion on Medical Diagnostics, 1(4), 521–530. https://doi.org/10.1517/17530059.1.4.521

22. Uno, N., & Ross, T. M. (2018). Dengue virus and the host innate immune response. Emerging Microbes & Infections, 7(1), 1–11. https://doi.org/10.1038/s41426-018-0168-0

23. Changal, K. H., Raina, A. H., Raina, A., Raina, M., Bashir, R., Latief, M., … Changal, Q. H. (2016). Differentiating secondary from primary dengue using IgG to IgM ratio in early dengue: an observational hospital based clinico-serological study from North India. BMC Infectious Diseases, 16(1), 715. https://doi.org/10.1186/s12879-016-2053-6

24. Lovera, D., Martínez-Cuellar, C., Galeano, F., Amarilla, S., Vazquez, C., & Arbo, A. (2019). Clinical manifestations of primary and secondary dengue in Paraguay and its relation to virus serotype. The Journal of Infection in Developing Countries, 13(12), 1127–1134. https://doi.org/10.3855/jidc.11584

25. Eivazzadeh-Keihan, R., Pashazadeh-Panahi, P., Mahmoudi, T., Chenab, K. K., Baradaran, B., Hashemzaei, M., … Maleki, A. (2019). Dengue virus: a review on advances in detection and trends – from conventional methods to novel biosensors. Microchimica Acta, 186(6), 329. https://doi.org/10.1007/s00604-019-3420-y

26. Warrilow, D.; Northill, J.A.; Pyke, A.; Smith, G.A. Single rapid TaqMan fluorogenic probe based PCR assay that detects all four dengue serotypes. J. Med. Virol. 2002, 66, 524–528.

27. Lanciotti, R.S.; Calisher, C.H.; Gubler, D.J.; Chang, G.J.; Vorndam, A.V. Rapid detection and typing of dengue viruses from clinical samples by using reverse transcriptase-polymerase chain reaction. J. Clin. Microbiol. 1992, 30, 545–551.

28. Wu, W.; Wang, J.; Yu, N.; Yan, J.; Zhuo, Z.; Chen, M.; Su, X.; Fang, M.; He, S.; Zhang, S.; et al. Development of multiplex real-time reverse-transcriptase polymerase chain reaction assay for simultaneous detection of Zika, dengue, yellow fever, and chikungunya viruses in a single tube. J. Med. Virol. 2018, 90, 1681–1686. [CrossRef]

29. Tsai, J.-J.; Liu, W.-L.; Lin, P.-C.; Huang, B.-Y.; Tsai, C.-Y.; Lee, P.-Y.A.; Tsai, Y.-L.; Chou, P.-H.; Chung, S.; Liu, L.-T.; et al. A fully automated sample-to-answer PCR system for easy and sensitive detection of dengue virus in human serum and mosquitos. PLoS ONE 2019, 14, e0218139.

30. Waggoner, J.J.; Abeynayake, J.; Sahoo, M.K.; Gresh, L.; Tellez, Y.; Gonzalez, K.; Ballesteros, G.; Guo, F.P.; Balmaseda, A.; Karunaratne, K.; et al. Comparison of the FDA-approved CDC DENV-1-4 real-time reverse transcription-PCR with a laboratorydeveloped assay for dengue virus detection and serotyping. J. Clin. Microbiol. 2013, 51, 3418–3420.

31. Santiago, G.A.; Vázquez, J.; Courtney, S.; Matías, K.Y.; Andersen, L.E.; Colón, C.; Butler, A.E.; Roulo, R.; Bowzard, J.; Villanueva, J.M.; et al. Performance of the Trioplex real-time RT-PCR assay for detection of Zika, dengue, and chikungunya viruses. Nat. Commun. 2018, 9, 1391.

32. Sahni, A.K.; Grover, N.; Sharma, A.; Khan, I.D.; Kishore, J. Reverse transcription loop-mediated isothermal amplification (RT-LAMP) for diagnosis of dengue. Med. J. Armed Forces India 2013, 69, 246–253.

33. Notomi, T.; Okayama, H.; Masubuchi, H.; Yonekawa, T.; Watanabe, K.; Amino, N.; Hase, T. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res. 2000, 28, E63.

34. Hu, S.-f.; Li, M.; Zhong, L.-l.; Lu, S.-m.; Liu, Z.-x.; Pu, J.-y.; Wen, J.-s.; Huang, X. Development of reverse-transcription loopmediated isothermal amplification assay for rapid detection and differentiation of dengue virus serotypes 1–4. BMC Microbiol. 2015, 15, 265.

35. Li, S.; Fang, M.; Zhou, B.; Ni, H.; Shen, Q.; Zhang, H.; Han, Y.; Yin, J.; Chang, W.; Xu, G.; et al. Simultaneous detection and differentiation of dengue virus serotypes 1–4, Japanese encephalitis virus, and West Nile virus by a combined reverse-transcription loop-mediated isothermal amplification assay. Virol. J. 2011, 8, 360.

36. Lau, Y.-L.; Lai, M.-Y.; Teoh, B.-T.; Abd-Jamil, J.; Johari, J.; Sam, S.-S.; Tan, K.-K.; AbuBakar, S. Colorimetric Detection of Dengue by Single Tube Reverse-Transcription-Loop-Mediated Isothermal Amplification. PLoS ONE 2015, 10, e0138694.

37. Wong, Y.P.; Othman, S.; Lau, Y.L.; Radu, S.; Chee, H.Y. Loop-mediated isothermal amplification (LAMP): A versatile technique for detection of micro-organisms. J. Appl. Microbiol. 2018, 124, 626–643.

38. Darwish, N.T.; Sekaran, S.D.; Alias, Y.; Khor, S.M. Immunofluorescence-based biosensor for the determination of dengue virus NS1 in clinical samples. J. Pharm. Biomed. Anal. 2018, 149, 591–602.

39. Lobato, I.M.; O’Sullivan, C.K. Recombinase polymerase amplification: Basics, applications and recent advances. Trends Anal. Chem. TRAC 2018, 98, 19–35.

40. Teoh, B.-T.; Sam, S.-S.; Tan, K.-K.; Danlami, M.B.; Shu, M.-H.; Johari, J.; Hooi, P.-S.; Brooks, D.; Piepenburg, O.; Nentwich, O.; et al. Early Detection of Dengue Virus by Use of Reverse Transcription-Recombinase Polymerase Amplification. J. Clin. Microbiol. 2015, 53, 830–837

41. Xi, Y.; Xu, C.Z.; Xie, Z.Z.; Zhu, D.L.; Dong, J.M. Rapid and visual detection of dengue virus using recombinase polymerase amplification method combined with lateral flow dipstick. Mol. Cell. Probes 2019, 46, 101413

42. M.J. Binnicker, M.E. Espy Comparison of six real-time PCR assays for qualitative detection of cytomegalovirus in clinical specimens J. Clin. Microbiol., 51 (2013), pp. 3749-3752, 10.1128/JCM.02005-13,

43. J. Gray, L.J. Coupland The increasing application of multiplex nucleic acid detection tests to the diagnosis of syndromic infections Epidemiol. Infect., 142 (2014), pp. 1-11, 10.1017/S0950268813002367

44. P.L. Smith, C.R. WalkerPeach, R.J. Fulton, D.B. DuBois A rapid, sensitive, multiplexed assay for detection of viral nucleic acids using the FlowMetrix system Clin. Chem., 44 (1998), pp. 2054-2056

45. S.H. Wootton, E. Aguilera, L. Salazar, A.C. Hemmert, R. Hasbun Enhancing pathogen identification in patients with meningitis and a negative Gram stain using the BioFire FilmArray® Meningitis/Encephalitis panel Ann. Clin. Microbiol. Antimicrob., 15 (2016), p. 26, 10.1186/s12941-016-0137-1

46. E. Wessels, L.G. Rusman, M.J.A.W.M. Van Bussel, E.C.J. Claas Added value of multiplex Luminex gastrointestinal pathogen panel (xTAG® GPP) testing in the diagnosis of infectious gastroenteritis Clin. Microbiol. Infect., 20 (2014), pp. O182-O187, 10.1111/1469-0691.12364

47. W. Wu, S. Zhang, J. Qu, Q. Zhang, C. Li, J. Li, C. Jin, M. Liang, D. Li Simultaneous detection of IgG antibodies associated with viral hemorrhagic fever by a multiplexed Luminex-based immunoassay Virus Res., 187 (2014), pp. 84-90, 10.1016/j.virusres.2013.12.037

48. R. Appanna, S.M. Wang, S.a. Ponnampalavanar, L.C.S. Lum, S.D. Sekaran Cytokine factors present in dengue patient sera induces alterations of junctional proteins in human endothelial cell. Am. J. Trop. Med. Hyg., 87 (2012), pp. 936-942, 10.4269/ajtmh.2012.11-0606

49. S.A. Dunbar Applications of Luminex xMAP technology for rapid, high-throughput multiplexed nucleic acid detection Clin. Chim. Acta, 363 (2006), pp. 71-82, 10.1016/j.cccn.2005.06.023

50. H.L.C. Santos, K. Bandyopadhyay, R. Bandea, R.H.S. Peralta, J.M. Peralta, A.J. Da Silva LUMINEX®: a new technology for the simultaneous identification of five Entamoeba spp. commonly found in human stools Parasit. Vectors, 6 (2013), p. 69, 10.1186/1756-3305-6-69

51. W. Wu, S. Zhang, J. Qu, Q. Zhang, C. Li, J. Li, C. Jin, M. Liang, D. Li Simultaneous detection of IgG antibodies associated with viral hemorrhagic fever by a multiplexed Luminex-based immunoassay Virus Res., 187 (2014), pp. 84-90, 10.1016/j.virusres.2013.12.037

52. P. Shu, J. Huang Current advances in dengue diagnosis Clin. Diagn. Lab. Immunol., 11 (2004), pp. 642-650, 10.1128/CDLI.11.4.642-650.2004

53. Mauro Jorge Cabral-Castro, Regina Helena Saramago Peralta, Marta Guimarães Cavalcanti, Marzia Puccioni-Sohler, Valéria Lima Carvalho, Pedro Fernando da Costa Vasconcelos, José Mauro Peralta, A Luminex-based single DNA fragment amplification assay as a practical tool for detecting and serotyping dengue virus, Journal of Virological Methods, Volume 236, 2016, Pages 18-24, ISSN 0166-0934,
https://doi.org/10.1016/j.jviromet.2016.07.003

54. Lyudmyla G. Glushakova, , Barry W. Alto, , Myong-Sang Kim, Daniel Hutter, Andrea Bradley, Kevin M. Bradley, Nathan D. Burkett-Cadena and Steven A. Benner. 2019. BMC Infectious Diseases 19:418 https://doi.org/10.1186/s12879-019-3998-z

55. Glushakova LG, Bradley A, Bradley KM, Alto BW, Hoshika S, Hutter D, Sharma N, Yang Z, Kim MJ, Benner SA. High-throughput multiplexed xMAP Luminex array panel for detection of twenty two medically important mosquitoborne arboviruses based on innovations in synthetic biology. J Virol Methods. 2015;214:60–74.

56. Glushakova LG, Sharma N, Hoshika S, Bradley AC, Bradley KM, Yang Z, Benner SA. Detecting respiratory viral RNA using expanded genetic alphabets and self-avoiding DNA. Anal Biochem. 2015;489:62–72

57. Prajapati A, Tandon A, Nain V. Towards the diagnosis of dengue virus and its serotypes using designed CRISPR/Cas13 gRNAs. Bioinformation. 2022 Aug 31;18(8):661-668. doi: 10.6026/9732063 0018661.

58. Ishino Y., Shinagawa H., Makino K., Amemura M., Nakata A. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J. Bacteriol. 1987;169:5429–5433. doi: 10.1128/jb.169.12.5429-5433.1987.

59. Jolany Vangah S, Katalani C, Booneh HA, Hajizade A, Sijercic A, Ahmadian G. CRISPR-Based Diagnosis of Infectious and Noninfectious Diseases. Biol Proced Online. 2020 Sep 14;22:22. doi: 10.118 6/s12575-020-00135-3. Erratum in: Biol Proced Online. 2020 Nov 7;22(1):24. doi: 10.1186/s12575-020-00136-2.

60. Jinek, M.; Chylinski, K.; Fonfara, I.; Hauer, M.; Doudna, J.A.; Charpentier, E. A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity.

61. Mali, P.; Yang, L.; Esvelt, K.M.; Aach, J.; Guell, M.; DiCarlo, J.E.; Norville, J.E.; Church, G.M. RNA-guided human genome engineering via Cas9. Science 2013, 339, 823–826.

62. Kumar P, Malik YS, Ganesh B, Rahangdale S, Saurabh S, Natesan S, Srivastava A, Sharun K, Yatoo MI, Tiwari R, Singh RK, Dhama K. CRISPR-Cas System: An Approach With Potentials for COVID-19 Diagnosis and Therapeutics. Front Cell Infect Microbiol. 2020 Nov 2;10:576875. doi: 10.3389/fcimb.2020.576875. [11] Kumar P et al. Front. Cell. Infect. Microbiol. 2020 10:576875.

63. Rahimi, H., Salehiabar, M., Barsbay, M., Ghaffarlou, M., Kavetskyy, T., Sharafi, A., … Conde, J. (2021). CRISPR Systems for COVID-19 Diagnosis. ACS Sensors, 6(4), 1430–1445. doi:10.1021/acsse nsors.0c02312

64. Gootenberg JS, Abudayyeh OO, Lee JW, Essletzbichler P, Dy AJ, Joung J, Verdine V, Donghia N, Daringer NM, Freije CA, Myhrvold C, Bhattacharyya RP, Livny J, Regev A, Koonin EV, Hung DT, Sabeti PC, Collins JJ, Zhang F. Nucleic acid detection with CRISPR-Cas13a/C2c2. Science. 2017 Apr 28;356(6336):438-442. doi: 10.1126/scie nce.aam9321.

65. Arizti-Sanz J, Freije CA, Stanton AC, Petros BA, Boehm CK, Siddiqui S, Shaw BM, Adams G, Kosoko-Thoroddsen TF, Kemball ME, Uwanibe JN, Ajogbasile FV, Eromon PE, Gross R, Wronka L, Caviness K, Hensley LE, Bergman NH, MacInnis BL, Happi CT, Lemieux JE, Sabeti PC, Myhrvold C. Streamlined inactivation, amplification, and Cas13-based detection of SARS-CoV-2. Nat Commun. 2020 Nov 20;11(1):5921. doi: 10.1038/s41467-020-19097-x.

66. Zhang Y, Xiang Y, Hou D, Fang L, Cai S, Zhang J, Wang Y, Jiang Y, Liu B, Bai J, Ding Y, Fang J, Chen S, Liu X, Ren X. A one-pot method for universal Dengue virus detection by combining RT-RPA amplification and CRISPR/Cas12a assay. BMC Microbiol. 2025 Mar 25;25(1):163. doi: 10.1186/s1 2866-025-03882-z.

67. Tian G, Tan J, Liu B, Xiao M, Xia Q. Field-deployable viral diagnostic tools for dengue virus based on Cas13a and Cas12a. Anal Chim Acta. 2024;1316: 342838

68. Chertow, D. S. Next-generation diagnostics with CRISPR. Science 360, 381–382 (2018).

69. Myhrvold C, Freije CA, Gootenberg JS, Abudayyeh OO, Metsky HC, Durbin AF, Kellner MJ, Tan AL, Paul LM, Parham LA, Garcia KF, Barnes KG, Chak B, Mondini A, Nogueira ML, Isern S, Michael SF, Lorenzana I, Yozwiak NL, MacInnis BL, Bosch I, Gehrke L, Zhang F, Sabeti PC. Field-deployable viral diagnostics using CRISPR-Cas13. Science. 2018 Apr 27;360(6387):444-448. doi: 10.1126/science.a as8836.

70. Cao J, Yao Y, Fan K, Tan G, Xiang W, Xia X, Li S, Wang W, Zhang L. Harnessing a previously unidentified capability of bacterial allosteric transcription factors for sensing diverse small molecules in vitro. Sci Adv. 2018 Nov 28;4(11): eaau4602. doi: 10.1126/sciadv.aau4602.

71. Cao, J., Yao, Y., Fan, K., Tan, G., Xiang, W., Xia, X., … Zhang, L. (2018). Harnessing a previously unidentified capability of bacterial allosteric transcription factors for sensing diverse small molecules in vitro. Science Advances, 4(11). https://doi.org/10.1126/sciadv.aau4602

72. Jiaye Zhong, Juezhuo Li, Shiyu Chen, Yue Xu, Xiaolei Mao, Minghui Xu, Shuyin Luo, Yi Yang, Jiawei Zhou, Jinghua Yuan, Lan Su, Gang Wang, Xinling Zhang, Xiaoping Li, Rapid and Efficient CRISPR-Based Detection of Dengue Virus in a Single-Tube, Journal of Applied Microbiology, 2025; lxaf070, https://doi.org/10.1093/jambio/lxaf070

73. Guozhen Tian, Jun Tan, Biao Liu, Meifang Xiao, Qianfeng Xia, Field-deployable viral diagnostic tools for dengue virus based on Cas13a and Cas12a, Analytica Chimica Acta, Volume 1316, 2024, 342838, ISSN 0003-2670,
https://doi.org/10.1016/j.aca.2024.342838.

74. Bhardwaj, P., Dhangur, P., Kalichamy, A. and Singh, R. (2025), RT-RPA Assisted CRISPR/Cas12a Based One-Pot Rapid and Visual Detection of the Pan-Dengue Virus. Journal of Medical Virology, 97: e70219. https://doi.org/10.1002/jmv.70219

75. Yu-Fang Leea, Kang-Yi Lienb, Huan-Yao Lei c, Gwo-Bin Lee (2025). An integrated microfluidic system for rapid diagnosis of dengue virus infection Yu-Fang Leea, Kang-Yi Lienb, Huan-Yao Lei c, Gwo-Bin Lee. Biosensors and Bioelectronics 25 (2009) 745–752

76. Vogels, C.B.F., Hill, V., Breban, M.I. et al. DengueSeq: a pan-serotype whole genome amplicon sequencing protocol for dengue virus. BMC Genomics 25, 433 (2024). https://doi.org/10.1186/s12864-024-10350-x

77. Dang TT, Pham MH, Bui HV, Van Le D. Whole genome sequencing and genetic variations in several dengue virus type 1 strains from unusual dengue epidemic of 2017 in Vietnam. Virol J. 2020 Jan 20;17(1):7. doi: 10.1186/s12985-020-1280-z.

78. Weaver SC and Vasilakis N (2009) Molecular evolution of dengue viruses: Contributions of phylogenetics to understanding the history and epidemiology of the preeminent arboviral disease. Infection, Genetics and Evolution 9(4), 523–540.

79. Islam A, Deeba F, Tarai B, Gupta E, Naqvi IH, Abdullah M, Dohare R, Ahmed A, Almajhdi FN, Hussain T, Parveen S (2023). Global and local evolutionary dynamics of Dengue virus serotypes 1, 3, and 4. Epidemiology and Infection, 151, e127, 1–18 https://doi.org/10.1017/S0950268823000924

80. Koo C, Nasir A, Hapuarachchi HC, Lee KS, Hasan Z, Ng LC and Khan E (2013) Evolution and heterogeneity of multiple serotypes of Dengue virus in Pakistan, 2006–2011. Virology Journal 10, 1–10.

81. Stiasny K, Malafa S, Aberle SW, Medits I, Tsouchnikas G, Aberle JH, et al. Different CrossReactivities of IgM Responses in Dengue, Zika and Tick-Borne Encephalitis Virus Infections. Viruses. 2021;13(4):596.
https://doi.org/10.3390/v13040596 PMID: 33807442

82. Kok B, Lim H, Lim C, Lai N, Leow C, Leow C. Dengue virus infection – a review of pathogenesis, vaccines, diagnosis and therapy. Virus Research. 2022;324:199018. https://doi.org/10.1186/1471-2334-11-209

83. Hu Z-Z, Huang H, Wu CH, Jung M, Dritschilo A, Riegel AT, et al. Omics-based molecular target and biomarker identification. Methods Mol Biol. 2011;719547–71. https://doi.org/10.1007/978-1-61779-027-0_26

84. Hossain MA, Sohel M, Rahman MH, Hasan MI, Khan MS, Amin MA, et al. Bioinformatics and In silico approaches to identify novel biomarkers and key pathways for cancers that are linked to the progression of female infertility: A comprehensive approach for drug discovery. PLoS One. 2023;18 (1):e0265746. https://doi.org/10.1371/journal.pone.0265746 PMID: 36608061

85. Restrepo JC, Dueñas D, Corredor Z, Liscano Y. Advances in Genomic Data and Biomarkers: Revolutionizing NSCLC Diagnosis and Treatment. Cancers (Basel). 2023;15(13):3474. https://doi.org/10.3390/cancers15133474 PMID: 37444584

86. Xie L, Yin X, Bi J, Luo H, Cao X, Ma Y. Identification of potential biomarkers in dengue via integrated bioinformatic analysis. PLoS Negl Trop Dis. 2021;15(8)

87. Dark P, Hossain A, McAuley DF, Brealey D, Carlson G, Clayton JC, Felton TW, Ghuman BK, Gordon AC, Hellyer TP, Lone NI, Manazar U, Richards G, McCullagh IJ, McMullan R, McNamee JJ, McNeil HC, Mouncey PR, Naisbitt MJ, Parker RJ, Poole RL, Rostron AJ, Singer M, Stevenson MD, Walsh TS, Welters ID, Whitehouse T, Whiteley S, Wilson P, Young KK, Perkins GD, Lall R; ADAPT-Sepsis Collaborators. Biomarker-Guided Antibiotic Duration for Hospitalized Patients With Suspected Sepsis: The ADAPT-Sepsis Randomized Clinical Trial. JAMA. 2025 Feb 25;333(8):682-693. doi: 10.1001/jama.2024.26458.

88. Paul JK, Azmal M, Alam T, Talukder OF, Ghosh A. Comprehensive analysis of intervention and control studies for the computational identification of dengue biomarker genes. PLoS Negl Trop Dis. 2025 Mar 18;19(3):e0012914. doi: 10.1371/journal.pntd.0012914.

89. Su W,Jiang L,Lu W,Xie H,Cao Y,Di B,Li Y, Nie K,Wang H,Zhang Z, Xu S,2022.A Serotype-Specific and Multiplex PCR Method for Whole-Genome Sequencing of Dengue Virus Directly from Clinical Samples. Microbiol Spectr10:e01210-22. https://doi.org/10.1128/spectrum.01210-22

90. Kafetzopoulou LE, Efthymiadis K, Lewandowski K, Crook A, Carter D, Osborne J, Aarons E, Hewson R, Hiscox JA, Carroll MW, Vipond R, Pullan ST. 2018. Assessment of metagenomic Nanopore and Illumina sequencing for recovering whole genome sequences of chikungunya and dengue viruses directly from clinical samples. Euro Surveill 23:1800228.

91. Deng X, Achari A, Federman S, Yu G, Somasekar S, Bartolo I, Yagi S, Mbala-Kingebeni P, Kapetshi J, Ahuka-Mundeke S, Muyembe-Tamfum J-J, Ahmed AA, Ganesh V, Tamhankar M, Patterson JL, Ndembi N, Mbanya D, Kaptue L, McArthur C, Munoz-Medina JE, Gonzalez-Bonilla CR, Lopez S, Arias CF, Arevalo S, Miller S, Stone M, Busch M, Hsieh K, Messenger S, Wadford DA, Rodgers M, Cloherty G, Faria NR, Theze J, Pybus OG, Neto Z, Morais J, Taveira N, Hackett JR, Jr, Chiu CY. 2020. Metagenomic sequencing with spiked primer enrichment for viral diagnostics and genomic surveillance. Nat Microbiol 5:443–454

92. Quick J, Grubaugh ND, Pullan ST, Claro IM, Smith AD, Gangavarapu K, Oliveira G, Robles-Sikisaka R, Rogers TF, Beutler NA, Burton DR, Lewis-Ximenez LL, de Jesus JG, Giovanetti M, Hill SC, Black A, Bedford T, Carroll MW, Nunes M, Alcantara LJ, Sabino EC, Baylis SA, Faria NR, Loose M, Simpson JT, Pybus OG, Andersen KG, Loman NJ. 2017. Multiplex PCR method for MinION and Illumina sequencing of Zika and other virus genomes directly from clinical samples. Nat Protoc 12:1261–1276

93. Acevedo A, Andino R. 2014. Library preparation for highly accurate population sequencing of RNA viruses. Nat Protoc 9:1760–1769.

94. Xiao M, Liu X, Ji J, Li M, Li J, Yang L, Sun W, Ren P, Yang G, Zhao J, Liang T, Ren H, Chen T, Zhong H, Song W, Wang Y, Deng Z, Zhao Y, Ou Z, Wang D, Cai J, Cheng X, Feng T, Wu H, Gong Y, Yang H, Wang J, Xu X, Zhu S, Chen F, Zhang Y, Chen W, Li Y, Li J. 2020. Multiple approaches for massively parallel sequencing of SARS-CoV-2 genomes directly from clinical samples. Genome Med 12:57.

95. Paden CR, Tao Y, Queen K, Zhang J, Li Y, Uehara A, Tong S. 2020. Rapid, sensitive, full-genome sequencing of severe acute respiratory syndrome coronavirus 2. Emerg Infect Dis 26:2401–2405.

96. Tewari, S. (2024). AI technology for detecting dengue: A systematic review. International Journal of Mosquito Research, 11(6), 141–143. https://doi.org/10.22271/23487941.2024.v11.i6a.815

97. Bohm BC, Borges FEM, Silva SCM, Soares AT, Ferreira DD, Belo VS, Lignon JS, Bruhn FRP. Utilization of machine learning for dengue case screening. BMC Public Health. 2024 Jun 11;24 (1):1573. doi: 10.1186/s12889-024-19083-8.

98. Davi C, Pastor A, Oliveira T, de Lima Neto FB, Braga-Neto U, Bigham AW, Acioli-Santos B. Severe dengue prognosis using human genome data and machine learning. IEEE Trans Biomed Eng. 2019;66(10):2861–8.
https://doi.org/10.1109/TBME.2019.2897285.

99. Tanner L, Schreiber M, Low JG, Ong A, Tolfvenstam T, Lai YL, Ng LC, Leo YS, Puong T, Vasudevan L, Simmons SG, Hibberd CP, M. L., Ooi EE. Decision tree algorithms predict the diagnosis and outcome of dengue fever in the early phase of illness. PLoS Negl Trop Dis. 2008;2(3):e196. https://doi.org/10.1371/journal.pntd.0000196.

100. Andrade Girón, D. C., Marín Rodriguez, W. J., Lioo-Jordan, F. d. M., & Ausejo Sánchez, J. L. (2025). Machine Learning and Deep Learning Models for Dengue Diagnosis Prediction: A Systematic Review. Informatics, 12(1), 15. https://doi.org/10.3390/informatics12010015

101. Lindsay Dahora Hein, Izabella N Castillo, Freddy A Medina, Frances Vila, Bruno Segovia-Chumbez, Jorge L Muñoz-Jordán, Stephen S Whitehead, Laura E Adams, Gabriela Paz-Bailey, Aravinda M de Silva, Lakshmanane Premkumar (2024). Lancet Microbe 2025; 6: 10095

Most read articles by the same author(s)