Neuroinflammation and Cognitive health in Type 2 Diabetes
Main Article Content
Abstract
This review explores the complex relationship between neuroinflammation and cognitive decline in individuals with Type 2 Diabetes (T2D). There is increasing awareness that cognitive impairment, which can range from mild difficulties to severe dementia, is a significant complication associated with T2D. Extensive research indicates that chronic neuroinflammation plays a critical role in this context, linking metabolic dysfunction with neurodegenerative changes in the brain. The discussion begins with the effects of chronic hyperglycemia, insulin resistance, and metabolic disruptions that contribute to systemic inflammation. This inflammation can be intense enough to breach the blood-brain barrier (BBB), leading to neuroinflammation. The activation of essential immune cells in the brain, such as microglia and astrocytes, is accompanied by a rise in pro-inflammatory cytokines like IL-1β, IL-6, and TNF-α. These inflammatory agents disrupt synaptic function, inhibit neurogenesis, and promote neuronal death, particularly in areas critical for memory and executive functions, such as the hippocampus and prefrontal cortex. As the investigation unfolds, valuable insights are drawn from both preclinical and clinical studies. Animal research highlights the adverse effects of metabolic stress and inflammation on neuronal health, while clinical data correlate elevated inflammatory markers with reduced cognitive performance among individuals with T2D. Neuroimaging studies further support these findings by visually demonstrating microglial activation in regions essential for cognitive function.
Article Details
The Medical Research Archives grants authors the right to publish and reproduce the unrevised contribution in whole or in part at any time and in any form for any scholarly non-commercial purpose with the condition that all publications of the contribution include a full citation to the journal as published by the Medical Research Archives.
References
2. Blázquez E, Hurtado-Carneiro V, LeBaut-Ayuso Y, et al. Significance of brain glucose hypometabolism, altered insulin signal transduction, and insulin resistance in several neurological diseases. Frontiers in Endocrinology. 2022;13:873301.
3. Thomassen JQ, Tolstrup JS, Benn M, Frikke-Schmidt R. Type-2 diabetes and risk of dementia: observational and Mendelian randomisation studies in 1 million individuals. Epidemiology and psychiatric sciences. 2020;29:e118.
4. Muraleedharan R, Dasgupta B. AMPK in the brain: its roles in glucose and neural metabolism. The FEBS Journal. 2022;289(8):2247-2262.
5. Valenza S, Paciaroni L, Paolini S, et al. Mild cognitive impairment subtypes and type 2 diabetes in elderly subjects. Journal of Clinical Medicine. 2020;9(7):2055.
6. Harvey PD. Domains of cognition and their assessment. Dialogues in clinical neuroscience. 2019;21(3):227-237.
7. Teleanu DM, Niculescu A-G, Lungu II, et al. An overview of oxidative stress, neuroinflammation, and neurodegenerative diseases. International journal of molecular sciences. 2022;23(11):5938.
8. Lénárt N, Brough D, Dénes Á. Inflammasomes link vascular disease with neuroinflammation and brain disorders. Journal of Cerebral Blood Flow & Metabolism. 2016;36(10):1668-1685.
9. Gupta M, Pandey S, Rumman M, Singh B, Mahdi AA. Molecular mechanisms underlying hyperglycemia associated cognitive decline. IBRO Neuroscience Reports. 2023;14:57-63.
10. Leng F, Edison P. Neuroinflammation and microglial activation in Alzheimer disease: where do we go from here? Nature Reviews Neurology. 2021;17(3):157-172.
11. Kacířová M, Zmeškalová A, Kořínková L, Železná B, Kuneš J, Maletínská L. Inflammation: major denominator of obesity, Type 2 diabetes and Alzheimer’s disease-like pathology? Clinical Science. 2020;134(5):547-570.
12. Macedo RG. The Immune System and Inflammation in Type 2 Diabetes. The Diabetes Textbook: Clinical Principles, Patient Management and Public Health Issues. 2019:145-167.
13. Li C, Wang Y, Xing Y, et al. Regulation of microglia phagocytosis and potential involvement of exercise. Frontiers in Cellular Neuroscience. 2022;16:953534.
14. Rauf A, Badoni H, Abu-Izneid T, et al. Neuroinflammatory markers: key indicators in the pathology of neurodegenerative diseases. Molecules. 2022;27(10):3194.
15. Rao JS, Kellom M, Kim H-W, Rapoport SI, Reese EA. Neuroinflammation and synaptic loss. Neurochemical research. 2012;37:903-910.
16. Sun Y, Koyama Y, Shimada S. Inflammation from peripheral organs to the brain: how does systemic inflammation cause neuroinflammation? Frontiers in aging neuroscience. 2022;14:903455.
17. Khalid M, Petroianu G, Adem A. Advanced glycation end products and diabetes mellitus: mechanisms and perspectives. Biomolecules. 2022;12(4):542.
18. Lee J, Kim SW, Kim K-T. Region-specific characteristics of astrocytes and microglia: a possible involvement in aging and diseases. Cells. 2022;11(12):1902.
19. Zhang T, Ma C, Zhang Z, Zhang H, Hu H. NF‐κB signaling in inflammation and cancer. MedComm. 2021;2(4):618-653.
20. Sullivan M, Fernandez-Aranda F, Camacho-Barcia L, et al. Insulin and disorders of behavioural flexibility. Neuroscience & biobehavioral reviews. 2023;150: 105169.
21. Emma E, Amanda J. Dietary lipids from body to brain. Progress in lipid research. 2022;85:101144.
22. de la Monte SM. Malignant brain aging: the formidable link between dysregulated signaling through mechanistic target of rapamycin pathways and alzheimer’s disease (type 3 diabetes). Journal of Alzheimer’s Disease. 2023;95(4):1301-1337.
23. Lin M-m, Liu N, Qin Z-h, Wang Y. Mitochondrial-derived damage-associated molecular patterns amplify neuroinflammation in neurodegenerative diseases. Acta Pharmacologica Sinica. 2022;43(10):2439-2447.
24. Andersson U, Ottestad W, Tracey KJ. Extracellular HMGB1: a therapeutic target in severe pulmonary inflammation including COVID-19? Molecular Medicine. 2020;26:1-13.
25. Angelova PR. Sources and triggers of oxidative damage in neurodegeneration. Free Radical Biology and Medicine. 2021;173:52-63.
26. Feingold KR, Grunfeld C. Diabetes and dyslipidemia. Diabetes And Cardiovascular Disease. Springer; 2023:425-472.
27. Passarelli M, Machado UF. AGEs-induced and endoplasmic reticulum stress/inflammation-mediated regulation of GLUT4 expression and atherogenesis in diabetes mellitus. Cells. 2021;11(1):104.
28. Biasizzo M, Kopitar-Jerala N. Interplay between NLRP3 inflammasome and autophagy. Frontiers in Immunology. 2020;11:591803.
29. Shi X, Sun Q, Hou Y, et al. Recognition and maturation of IL-18 by caspase-4 noncanonical inflammasome. Nature. 2023;624(7991):442-450.
30. Wang H, He Y, Sun Z, et al. Microglia in depression: an overview of microglia in the pathogenesis and treatment of depression. Journal of neuroinflammation. 2022;19(1):132.
31. Anita NZ, Zebarth J, Chan B, et al. Inflammatory markers in type 2 diabetes with vs. without cognitive impairment; a systematic review and meta-analysis. Brain, Behavior, and Immunity. 2022;100:55-69.
32. Dyer AH, McKenna L, Batten I, et al. Peripheral inflammation and cognitive performance in middle-aged adults with and without type 2 diabetes: results from the ENBIND study. Frontiers in Aging Neuroscience. 2020;12:605878.
33. Edison P. Neuroinflammation, microglial activation, and glucose metabolism in neurodegenerative diseases. International Review of Neurobiology. 2020;154:325-344.
34. Xu T, Liu J, Li X-r, et al. The mTOR/NF-κB pathway mediates neuroinflammation and synaptic plasticity in diabetic encephalopathy. Molecular neurobiology. 2021;58:3848-3862.
35. Gaggini M, Ndreu R, Michelucci E, Rocchiccioli S, Vassalle C. Ceramides as mediators of oxidative stress and inflammation in cardiometabolic disease. International Journal of Molecular Sciences. 2022;23(5):2719.
36. Boghdadi AG, Teo L, Bourne JA. The neuroprotective role of reactive astrocytes after central nervous system injury. Journal of Neurotrauma. 2020;37(5):681-691.
37. Schönfeld P, Reiser G. How the brain fights fatty acids’ toxicity. Neurochemistry International. 2021;148:105050.
38. Garbuz D, Zatsepina O, Evgen’ev M. Beta amyloid, tau protein, and neuroinflammation: an attempt to integrate different hypotheses of Alzheimer’s disease pathogenesis. Molecular Biology. 2021;55:670-682.
39. Luo A, Xie Z, Wang Y, et al. Type 2 diabetes mellitus-associated cognitive dysfunction: advances in potential mechanisms and therapies. Neuroscience & Biobehavioral Reviews. 2022;137:104642.
40. Soung AL, Davé VA, Garber C, Tycksen ED, Vollmer LL, Klein RS. IL-1 reprogramming of adult neural stem cells limits neurocognitive recovery after viral encephalitis by maintaining a proinflammatory state. Brain, behavior, and immunity. 2022;99:383-396.
41. Wu A, Zhang J. Neuroinflammation, memory, and depression: new approaches to hippocampal neurogenesis. Journal of Neuroinflammation. 2023;20(1):283.
42. Brown DT, Vickers JC, Stuart KE, Cechova K, Ward DD. The BDNF Val66Met polymorphism modulates resilience of neurological functioning to brain ageing and dementia: a narrative review. Brain Sciences. 2020;10(4):195.
43. Colucci-D’Amato L, Speranza L, Volpicelli F. Neurotrophic factor BDNF, physiological functions and therapeutic potential in depression, neurodegeneration and brain cancer. International journal of molecular sciences. 2020;21(20):7777.
44. Spinelli M, Fusco S, Grassi C. Brain insulin resistance impairs hippocampal plasticity. Vitamins and Hormones. 2020;114:281-306.
45. Di Domenico F, Lanzillotta C. The disturbance of protein synthesis/degradation homeostasis is a common trait of age-related neurodegenerative disorders. Advances in Protein Chemistry and Structural Biology. 2022;132:49-87.
46. Fan CL, Sokolowski HM, Rosenbaum RS, Levine B. What about “space” is important for episodic memory? Wiley Interdisciplinary Reviews: Cognitive Science. 2023;14(3):e1645.
47. Davidson TL, Stevenson RJ. Vulnerability of the Hippocampus to Insults: Links to Blood–Brain Barrier Dysfunction. International Journal of Molecular Sciences. 2024;25(4):1991.
48. Arvanitakis Z, Tatavarthy M, Bennett DA. The relation of diabetes to memory function. Current neurology and neuroscience reports. 2020;20:1-10.
49. Patwardhan M. Gender-Specific Differences in Cognitive Functions and Alzheimer’s Risk in Type 2 Diabetes Mellitus. Adler University; 2021.
50. Cui Y, Tang TY, Lu CQ, Ju S. Insulin resistance and cognitive impairment: evidence from neuroimaging. Journal of Magnetic Resonance Imaging. 2022;56(6):1621-1649.
51. Jorge HMVM. Decision-Making Under Uncertainty: Linking Brain, Behavior and Family Factors in Patients with Type 1 Diabetes. Universidade de Coimbra (Portugal); 2020.
52. Vinciguerra L, Lanza G, Puglisi V, et al. Update on the neurobiology of vascular cognitive impairment: from lab to clinic. International journal of molecular sciences. 2020;21(8):2977.
53. Motevalli S, Salahshour HM, Bailey RP. The mediating role of cognitive flexibility in the relationship between cognitive emotion regulation strategies and mindfulness in patients with type 2 diabetes. Journal of affective disorders. 2023;339:676-682.
54. Mengozzi A, de Ciuceis C, Dell’oro R, et al. The importance of microvascular inflammation in ageing and age-related diseases: a position paper from the ESH working group on small arteries, section of microvascular inflammation. Journal of Hypertension. 2023;41(10):1521-1543.
55. Ryan CM, van Duinkerken E, Rosano C. Neurocognitive consequences of diabetes. American Psychologist. 2016;71(7):563.
56. Jellinger KA. Pathomechanisms of vascular depression in older adults. International journal of molecular sciences. 2020;23(1):308.
57. Damanik J, Yunir E. Type 2 diabetes mellitus and cognitive impairment. Acta Med Indones. 2021;53(2):213-220.
58. De Felice FG, Ferreira ST. Inflammation, defective insulin signaling, and mitochondrial dysfunction as common molecular denominators connecting type 2 diabetes to Alzheimer disease. Diabetes. 2014;63(7):2262-2272.
59. Ma L, Wang J, Li Y. Insulin resistance and cognitive dysfunction. Clinica chimica acta. 2015;444:18-23.
60. Sultana MA, Hia RA, Akinsiku O, Hegde V. Peripheral mitochondrial dysfunction: a potential contributor to the development of metabolic disorders and Alzheimer’s disease. Biology. 2023;12(7):1019.
61. Tiehuis A, Vincken K, Van Den Berg E, et al. Cerebral perfusion in relation to cognitive function and type 2 diabetes. Diabetologia. 2008;51:1321-1326.
62. Hardigan T, Ward R, Ergul A. Cerebrovascular complications of diabetes: focus on cognitive dysfunction. Clinical Science. 2016;130(20):1807-1822.
63. Chung C-C, Pimentel D, Jor'Dan AJ, Hao Y, Milberg W, Novak V. Inflammation-associated declines in cerebral vasoreactivity and cognition in type 2 diabetes. Neurology. 2015;85(5):450-458.
64. Fourrier C, Singhal G, Baune BT. Neuroinflammation and cognition across psychiatric conditions. CNS spectrums. 2019;24(1):4-15.
65. Li H, Xue X, Li L, et al. Aluminum-induced synaptic plasticity impairment via PI3K-Akt-mTOR signaling pathway. Neurotoxicity research. 2020;37:996-1008.
66. Ahmad RMAH, Ababneh NA, Al-Domi HA. Brain insulin resistance as a mechanistic mediator links peripheral metabolic disorders with declining cognition. Diabetes & Metabolic Syndrome: Clinical Research & Reviews. 2022;16(4):102468.
67. Choudhary AK. Type 2 Diabetes and Cognitive Decline: A Neurovascular Perspective. Chronicle of Diabetes Research and Practice. 2025;4(1):31-41.
68. Li H, Ren J, Li Y, Wu Q, Wei J. Oxidative stress: The nexus of obesity and cognitive dysfunction in diabetes. Frontiers in endocrinology. 2023;14:1134025.
69. Ayer A, Fazakerley DJ, James DE, Stocker R. The role of mitochondrial reactive oxygen species in insulin resistance. Free Radical Biology and Medicine. 2022;179:339-362.
70. González P, Lozano P, Ros G, Solano F. Hyperglycemia and oxidative stress: an integral, updated and critical overview of their metabolic interconnections. International journal of molecular sciences. 2023;24(11):9352.
71. Huang X, Hussain B, Chang J. Peripheral inflammation and blood–brain barrier disruption: effects and mechanisms. CNS neuroscience & therapeutics. 2021;27(1):36-47.
72. Yu Y, Chen R, Mao K, Deng M, Li Z. The role of glial cells in synaptic dysfunction: insights into Alzheimer's disease mechanisms. Aging and disease. 2024;15(2):459.
73. Dutta BJ, Singh S, Seksaria S, Gupta GD, Singh A. Inside the diabetic brain: Insulin resistance and molecular mechanism associated with cognitive impairment and its possible therapeutic strategies. Pharmacological Research. 2022;182:106358.
74. Aderinto N, Olatunji G, Abdulbasit M, et al. The impact of diabetes in cognitive impairment: A review of current evidence and prospects for future investigations. Medicine. 2023;102(43):e35557.
75. Ding H, Li Y, Wen M, Liu X, Han Y, Zeng H. Elevated intracranial pressure induces IL‑1β and IL‑18 overproduction via activation of the NLRP3 inflammasome in microglia of ischemic adult rats. International Journal of Molecular Medicine. 2021;47(1):183-194.
76. Kshirsagar V, Thingore C, Juvekar A. Insulin resistance: a connecting link between Alzheimer’s disease and metabolic disorder. Metabolic Brain Disease. 2021;36(1):67-83.
77. Cornell J, Salinas S, Huang H-Y, Zhou M. Microglia regulation of synaptic plasticity and learning and memory. Neural regeneration research. 2022;17(4):705-716.
78. Barloese MC, Bauer C, Petersen ET, Hansen CS, Madsbad S, Siebner HR. Neurovascular coupling in type 2 diabetes with cognitive decline. A narrative review of neuroimaging findings and their pathophysiological implications. Frontiers in endocrinology. 2022;13:874007.
79. Biessels GJ, Nobili F, Teunissen CE, Simó R, Scheltens P. Understanding multifactorial brain changes in type 2 diabetes: a biomarker perspective. The Lancet Neurology. 2020;19(8):699-710.
80. Kellar D, Register T, Lockhart SN, et al. Intranasal insulin modulates cerebrospinal fluid markers of neuroinflammation in mild cognitive impairment and Alzheimer’s disease: A randomized trial. Scientific reports. 2022;12(1):1346.
81. Jönsson M, Gerdle B, Ghafouri B, Bäckryd E. The inflammatory profile of cerebrospinal fluid, plasma, and saliva from patients with severe neuropathic pain and healthy controls-a pilot study. BMC neuroscience. 2021;22:1-12.
82. An Y, Xu B-t, Wan S-r, et al. The role of oxidative stress in diabetes mellitus-induced vascular endothelial dysfunction. Cardiovascular diabetology. 2023;22(1):237.
83. Dludla PV, Mabhida SE, Ziqubu K, et al. Pancreatic β-cell dysfunction in type 2 diabetes: Implications of inflammation and oxidative stress. World journal of diabetes. 2023;14(3):130.
84. Ma X, Nan F, Liang H, et al. Excessive intake of sugar: An accomplice of inflammation. Frontiers in immunology. 2022;13:988481.
85. Zhang Z, Huang Q, Zhao D, Lian F, Li X, Qi W. The impact of oxidative stress-induced mitochondrial dysfunction on diabetic microvascular complications. Frontiers in endocrinology. 2023;14:1112363.
86. Galea I. The blood–brain barrier in systemic infection and inflammation. Cellular & molecular immunology. 2021;18(11):2489-2501.
87. Wątroba M, Grabowska AD, Szukiewicz D. Effects of diabetes mellitus-related dysglycemia on the functions of blood–brain barrier and the risk of dementia. International Journal of Molecular Sciences. 2023;24(12):10069.
88. Takata F, Nakagawa S, Matsumoto J, Dohgu S. Blood-brain barrier dysfunction amplifies the development of neuroinflammation: understanding of cellular events in brain microvascular endothelial cells for prevention and treatment of BBB dysfunction. Frontiers in cellular neuroscience. 2021;15:661838.
89. Zhao B, Yin Q, Fei Y, et al. Research progress of mechanisms for tight junction damage on blood–brain barrier inflammation. Archives of Physiology and Biochemistry. 2022;128(6):1579-1590.
90. Di Benedetto G, Burgaletto C, Bellanca CM, Munafò A, Bernardini R, Cantarella G. Role of microglia and astrocytes in Alzheimer’s disease: from neuroinflammation to Ca2+ homeostasis dysregulation. Cells. 2022;11(17):2728.
91. Hartmann S-M, Heider J, Wüst R, Fallgatter AJ, Volkmer H. Microglia-neuron interactions in schizophrenia. Frontiers in Cellular Neuroscience. 2024;18:1345349.
92. Sun M, You H, Hu X, et al. Microglia–astrocyte interaction in neural development and neural pathogenesis. Cells. 2023;12(15):1942.
93. Marrano N, Biondi G, Borrelli A, et al. Type 2 diabetes and Alzheimer’s disease: the emerging role of cellular lipotoxicity. Biomolecules. 2023;13(1):183.
94. Piekarz J, Picheta N, Burdan O, Kurek M, Chrosci nska-Krawczyk M. Phytotherapy in Alzheimer’s Disease—A Narrative Review. Biomedicines 2024, 12, 1812. 2024.
95. Toledano Gasca A, Rodríguez-Casado A, Álvarez MI, Toledano-Díaz A. Alzheimer’s Disease, Obesity, and Type 2 Diabetes: Focus on Common Neuroglial Dysfunctions (Critical Review and New Data on Human Brain and Models). 2024;
96. Banasr M, Sanacora G, Esterlis I. Macro-and microscale stress–associated alterations in brain structure: translational link with depression. Biological Psychiatry. 2021;90(2):118-127.
97. Blinkouskaya Y, Weickenmeier J. Brain shape changes associated with cerebral atrophy in healthy aging and Alzheimer’s disease. Frontiers in Mechanical Engineering. 2021;7:705653.