The cognitive basis of psychosocial impact in COVID-19 pandemic. Does it encircle the default mode network of the brain? A pragmatic proposal.

Main Article Content

Souvik Dubey, MD, DM Mahua Jana Dubey, MD Ritwik Ghosh, MD Alex J. Mitchell, MD Subhankar Chatterjee, MD Shambaditya Das, MD, DM Alak Pandit, MD, DM Biman Kanti Ray, MD, DNB, DM Gautam Das, MD, DM Julián Benito-León, MD, PhD

Abstract

Epigenetics, hypothalamic-pituitary axes, environmental and metabolic influences, and transgenerational plasticity govern social behavior. Cognitive research considers the brain's default mode network (DMN) as a central hub that integrates various cognitive and social processing domains responsible for emotion perception, empathy, theory of mind, and morality. Hence, DMN is regarded as the "social brain." Upsurge in social turmoil, social anxiety, panic, depression, post-traumatic stress, hoarding, herd behavior, substance and behavioral addictions, sexual abuse, and violence in the time of the COVID-19 pandemic are intricately related to personality traits resulting in disruptive social cognition and social behavior, conceptualized as the result of unsettling and disruption of the functional nexus of the DMN. Considering overt and conspicuous display of neuroticism during the current pandemic, its impact upon modulation of the DMN functional nexus and the DMN itself, and the potential to presage cognitive impairment in the future, the authors caution that an increase in the global burden of dementia may be one of the long-term ramifications of COVID-19. Social behavior, a functional derivative of the DMN, can strikingly affect the functional nexus of DMN and the DMN itself, in a centripetal way via the phenomenon called "Experience-Dependent Plasticity," with long-term consequences. In this review, we intend to 1) decipher the association between social cognition and social behavior with the DMN, in time of COVID-19; and to 2) discuss the prospective aftermath of disrupted social behavior during the pandemic on modulation/alteration of functional connectomes of DMN or the DMN itself in the time ahead.

Article Details

How to Cite
DUBEY, Souvik et al. The cognitive basis of psychosocial impact in COVID-19 pandemic. Does it encircle the default mode network of the brain? A pragmatic proposal.. Medical Research Archives, [S.l.], v. 10, n. 3, mar. 2022. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/2707>. Date accessed: 28 nov. 2022. doi: https://doi.org/10.18103/mra.v10i3.2707.
Section
Research Articles

References

1. Beaudoin C, Beauchamp MH. Social cognition. Handb Clin Neurol. 2020; 173:255–264.
2. Mars RB, Neubert FX, Noonan MP, Sallet J, Toni I, Rushworth MF. The relationship between the "default mode network" and the "social brain." Front Hum Neurosci. Epub 2012 Jun 21.
3. Lacal I, Ventura R. Epigenetic Inheritance: Concepts, Mechanisms and Perspectives. Front Mol Neurosci. 2018.
4. Kanherkar RR, Bhatia-Dey N, Csoka AB. Epigenetics across the human lifespan. Front Cell Dev Biol. 2014.
5. Ho DH, Burggren WW. Epigenetics and transgenerational transfer: a physiological perspective. J Exp Biol. 2010;1;213(1):3-16.
6. Navarro G, Franco N, Martínez-Pinilla E, Franco R. The Epigenetic Cytocrin Pathway to the Nucleus. Epigenetic Factors, Epigenetic Mediators, and Epigenetic Traits. A Biochemist Perspective. Front Genet. 2017;8.
7. Gudsnuk K, Champagne FA. Epigenetic influence of stress and the social environment. ILAR J. 2012;53:279–288.
8. Seebacher F, Krause J. Epigenetics of Social Behaviour. Trends Ecol Evol. Epub; 2019.
9. Donelan SC, Hellmann JK, Bell AM, et al. Transgenerational Plasticity in Human-Altered Environments. Trends Ecol Evol. 2020;Feb;35(2):115-124.
10. Harmon EA, Pfennig DW. Evolutionary rescue via transgenerational plasticity: Evidence and implications for conservation. Evol Dev. 2021;Jul;23(4):292-307.
11. Xin F, Susiarjo M, Bartolomei MS. Multigenerational and transgenerational effects of endocrine disrupting chemicals: A role for altered epigenetic regulation? Semin Cell Dev Biol. Epub. 2015;43:66–75.
12. Fox RJ, Donelson JM, Schunter C, Ravasi T, Gaitán-Espitia JD. Beyond buying time: the role of plasticity in phenotypic adaptation to rapid environmental change. Philos Trans R Soc Lond B Biol Sci. 2019;18;374(1768):20180174.
13. Dubey S, Biswas P, Ghosh R, Chatterjee S, Dubey MJ, Chatterjee S. Psychosocial impact of COVID-19. Diabetes Metab Syndr. 2020;14:779–788.
14. Dubey S, Dubey MJ, Ghosh R, Chatterjee S. Children of frontline coronavirus disease-2019 warriors: our observations. J Pediatr. 2020;224:188–189.
15. Dubey MJ, Ghosh R, Chatterjee S, Biswas P, Chatterjee S, Dubey S. COVID-19 and addiction. Diabetes Metab Syndr. 2020;Sep-Oct;14(5):817-823.
16. Ghosh R, Dubey MJ, Chatterjee S, Dubey S. Impact of COVID -19 on children: special focus on the psychosocial aspect. Minerva Pediatr. 2020;Jun;72(3):226-235. doi:10 23736 0026-4946 20 05887-9.
17. Roy D, Ghosh R, Dubey S, Dubey MJ, Benito-León J, Kanti Ray B. Neurological and Neuropsychiatric Impacts of COVID-19 Pandemic. Can J Neurol Sci. 2021;Jan;48(1):9-24.
18. Dubey S, Sengupta S, Ghosh R, et al. COVID-19 Pandemic, Personality and Geriatric Population: Proposed Pragmatism. J Patient Exp. Epub 2021 Nov 20.
19. Smallwood J, Bernhardt BC, Leech R, Bzdok D, Jefferies E, Margulies DS. The default mode network in cognition: a topographical perspective. Nat Rev Neurosci. Epub; 2021;Aug;22(8):503-513.
20. Smallwood J, Bernhardt BC, Leech R, Bzdok D, Jefferies E, Margulies DS. The default mode network in cognition: a topographical perspective. Nat Rev Neurosci. Epub; 2021;Aug;22(8):503-513.
21. Li W, Mai X, Liu C. The default mode network and social understanding of others: what do brain connectivity studies tell us. Front Hum Neurosci. Epub 2014.
22. Dohmatob E, Dumas G, Bzdok D, Mapp HB. Dark control: The default mode network as a reinforcement learning agent. 2020.
23. Buckner RL, Andrews-Hanna S JR, D.L. The brain’s default network: anatomy, function, and relevance to disease. Ann N Y Acad Sci. Epub 2008 Mar 1.
24. Andrews-Hanna R J.R., J.S. S, J P, R B, R.L. Functional-anatomic fractionation of the brain's default network. Neuron. 2010;25;65(4):550-62.
25. Greicius MD, Krasnow B, Reiss AL, Menon V, A PNASUS. Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. 2003.
26. Buckner RL, Andrews-Hanna S JR, D.L. The brain’s default network: anatomy, function, and relevance to disease. Ann N Y Acad Sci. Epub 2008 Mar 1.
27. Andrews-Hanna J. The brain’s default network and its adaptive role in internal mentation. Neuroscientist. 2012;Jun;18(3):251-70.
28. Molnar-Szakacs I, Uddin LQ. Self-processing and the default mode network: interactions with the mirror neuron system. Front Hum Neurosci. 2013;7.
29. Yeshurun Y, Nguyen M, Hasson U. The default mode network: where the idiosyncratic self meets the shared social world. Nat Rev Neurosci. Epub; 2021;Mar;22(3):181-192.
30. Menon V. Large-scale brain networks and psychopathology: a unifying triple network model. Trends Cogn Sci. 2011;Oct;15(10):483-506.
31. Friston K.J. Models of brain function in neuroimaging. Annu Rev Psychol. 2005;56:57–87.
32. Smith SM, Miller KL, Salimi-Khorshidi G, et al. Network modelling methods for FMRI. Neuroimage. 2011;15;54(2):875-91.
33. Lindquist KA, Wager TD, Kober H, Bliss-Moreau E, Barrett LF. The brain basis of emotion: a meta-analytic review. Behav Brain Sci. 2012;Jun;35(3):121-43.
34. Lindquist KA, Barrett LF. A functional architecture of the human brain: emerging insights from the science of emotion. Trends Cogn Sci. Epub 2012.
35. Blair RJ. The amygdala and ventromedial prefrontal cortex in morality and psychopathy. Trends Cogn Sci. 2007;Sep;11(9):387-92.
36. Murphy FC, Nimmo-Smith I, Lawrence AD. Functional neuroanatomy of emotions: a meta-analysis. Cogn Affect Behav Neurosci. 2003;3:207–233.
37. Ghosh R, Biswas P, Chatterjee S, et al. Love and emotions at the time of COVID-19. Minerva Psychiatry. 2021:156–163.
38. Rebello K, Moura LM, Pinaya WHL, Rohde LA, Sato J. Default Mode Network Maturation and Environmental Adversities During Childhood. Chronic Stress (Thousand Oaks. 2018;2.
39. Decety J, Porges EC. Imagining being the agent of actions that carry different moral consequences: an fMRI study. Neuropsychologia. 2011;Sep;49(11):2994-3001.
40. Engen HG, Singer T. Empathy circuits. Curr Opin Neurobiol. 2013;Apr;23(2):275-82.
41. Decety J, Norman GJ, Berntson GG, Cacioppo JT. A neurobehavioral evolutionary perspective on the mechanisms underlying empathy. Prog Neurobiol. Epub; 2012;Jul;98(1):38-48.
42. Decety J, Michalska KJ, Kinzler KD. The contribution of emotion and cognition to moral sensitivity: a neurodevelopmental study. Cereb Cortex. 2012;22:209–220.
43. Decety J, Svetlova M. Putting together phylogenetic and ontogenetic perspectives on empathy. Dev Cogn Neurosci. Epub; 2012.
44. Cheng Y, Lin CP, Liu HL, et al. Expertise modulates the perception of pain in others. Current Biology. 2007;9;17(19):1708-13.
45. Otti A, Guendel H, Läer L, et al. I know the pain you feel-how the human brain’s default mode predicts our resonance to another’s suffering. Neuroscience. Epub; 2010;11;169(1):143-8.
46. Cox CL, Uddin LQ, Di Martino A, Castellanos FX, Milham MP, Kelly C. The balance between feeling and knowing: affective and cognitive empathy are reflected in the brain’s intrinsic functional dynamics. Soc Cogn Affect Neurosci. Epub; 2012;Aug;7(6):727-37.
47. Gu X, Liu X, Guise KG, Naidich TP, Hof PR, Fan J. Functional dissociation of the frontoinsular and anterior cingulate cortices in empathy for pain. J Neurosci. 2010;10;30(10):3739-44.
48. Zaki J, Ochsner KN, Hanelin J, Wager TD, Mackey SC. Different circuits for different pain: patterns of functional connectivity reveal distinct networks for processing pain in self and others. Soc Neurosci. 2007;2:276–291.
49. Walter H. Social cognitive neuroscience of empathy: concepts, circuits, and genes. Emotion Review. 2012;Jan;4(1):9-17.
50. Amodio DM, Frith CD. Meeting of minds: the medial frontal cortex and social cognition. Nat Rev Neurosci. 2006;7:268–277.
51. Abu-Akel A, Shamay-Tsoory S. Neuroanatomical and neurochemical bases of theory of mind. Neuropsychologia. 2011;49:2971–2984.
52. Krause L, Enticott PG, Zangen A, Fitzgerald PB. The role of medial prefrontal cortex in theory of mind: a deep rTMS study. Behav Brain Res. 2012;228:87–90.
53. Gallagher HL, Frith CD. Functional imaging of “theory of mind.” Trends Cogn Sci. 2003;Feb;7(2):77-83. doi:10 1016 1364-6613 02 00025-6.
54. Samson D, Apperly IA, Chiavarino C, Humphreys GW. Left temporoparietal junction is necessary for representing someone else’s belief. Nat Neurosci. 2004;May;7(5):499-500.
55. Spreng RN, Mar RA, Kim AS. The common neural basis of autobiographical memory, prospection, navigation, theory of mind, and the default mode: a quantitative meta-analysis. J Cogn Neurosci. 2009;Mar;21(3):489-510.
56. Fair DA, Cohen AL, Dosenbach NU, et al. The maturing architecture of the brain’s default network. 2008.
57. Saxe R. Uniquely human social cognition. Curr Opin Neurobiol. 2006;16:235–239.
58. Spreng RN, Grady CL. Patterns of brain activity supporting autobiographical memory, prospection, and theory of mind, and their relationship to the default mode network. J Cogn Neurosci. 2010;Jun;22(6):1112-23.
59. Ghosh R, Dubey S, Roy D, Mandal A, Naga D, Benito-León J. Focal onset non-motor seizure following COVID-19 vaccination: A mere coincidence? Diabetes Metab Syndr. 2021.
60. Dutta A, Ghosh R, Bhattacharya D, et al. Anti-PF4 antibody negative cerebral venous sinus thrombosis without thrombocytopenia following immunization with COVID-19 vaccine in an elderly non-comorbid Indian male, managed with conventional heparin-warfarin based anticoagulation. Diabetes Metab Syndr. 2021;Jul-Aug;15(4):102184.
61. Bzdok D, Schilbach L, Vogeley K, Schneider K, Laird AR, Langner R. Parsing the neural correlates of moral cognition: ALE meta-analysis on morality, theory of mind, and empathy. Brain Struct Funct. 2012;217:783–796.
62. Reniers RL, Corcoran R, Völlm BA, Mashru A, Howard R, Liddle PF. Moral decision-making, ToM, empathy and the default mode network. Biol Psychol. 2012;90:202–210.
63. Greene JD, Nystrom LE, Engell AD, Darley JM, Cohen JD. The neural bases of cognitive conflict and control in moral judgment. Neuron. 2004;44:389–400.
64. Young L, Cushman F, Hauser M, Saxe R. The neural basis of the interaction between theory of mind and moral judgment. Proc Natl Acad Sci USA. 2007;104:8235–8240.
65. Young L, Saxe R. The neural basis of belief encoding and integration in moral judgment. Neuroimage. 2008;40:1912–1920.
66. Young L, Saxe R. An FMRI investigation of spontaneous mental state inference for moral judgment. J Cogn Neurosci. 2009;21:1396–1405.
67. Tangney JP, Stuewig J, Mashek DJ. Moral emotions and moral behavior. Annu Rev Psychol. 2007;58:345–372.
68. Zahn R, Moll J, Paiva M, Garrido G, Krueger F, Huey ED. The neural basis of human social values: evidence from functional MRI. Cereb Cortex. 2009;19:276–283.
69. Moll J, De Oliveira-Souza R, Zahn R. The neural basis of moral cognition: sentiments, concepts, and values. Ann. N.Y. Acad Sci. 2008;1124:161–180.
70. Greene JD, Morelli SA, Lowenberg K, Nystrom LE, Cohen JD. Cognitive load selectively interferes with utilitarian moral judgment. Cognition. 2008;107:1144–1154.
71. Marsh AA, Finger EC, Fowler KA, Jurkowitz IT, Schechter JC, Yu HH. Reduced amygdala-orbitofrontal connectivity during moral judgments in youths with disruptive behavior disorders and psychopathic traits. Psychiatry Res. 2011;194:279–286.
72. Craig MC, Catani M, Deeley Q, Latham R, Daly E, Kanaan R. Altered connections on the road to psychopathy. Mol Psychiatry. 2009;14:946–953.
73. Shannon BJ, Raichle ME, Snyder AZ, et al. Premotor functional connectivity predicts impulsivity in juvenile offenders. Proc Natl Acad Sci U S A. 2011;5;108(27):11241-5.
74. Fox MD, Snyder AZ, Vincent JL, et al. The human brain is intrinsically organized into dynamic, anticorrelated functional networks. 2005.
75. Bressler SL, Kelso JA. Cortical coordination dynamics and cognition. Trends Cogn Sci. 2001;1;5(1):26-36.
76. Seeley WW, Menon V, Schatzberg AF, et al. Dissociable intrinsic connectivity networks for salience processing and executive control. J Neurosci. 2007;28;27(9):2349-56.
77. Jun J, Toh YN, Sisk CA, Remington RW, Lee VG. Do concerns about COVID-19 impair sustained attention? Cogn Res Princ Implic. 2021.
78. Whitfield-Gabrieli S, Moran JM, Nieto-Castañón A, Triantafyllou C, Saxe R, Gabrieli JD. Associations and dissociations between default and self-reference networks in the human brain. Neuroimage. 2011;1;55(1):225-32.
79. Carhart-Harris RL, Friston KJ. The default-mode, ego-functions and free-energy: a neurobiological account of Freudian ideas. Brain. Epub 2010.
80. Palaniyappan L, Simmonite M, White TP, Liddle EB, Liddle PF. Neural primacy of the salience processing system in schizophrenia. Neuron. 2013;21;79(4):814-28.
81. Nekovarova T, Fajnerova I, Horacek J, Spaniel F. Bridging disparate symptoms of schizophrenia: a triple network dysfunction theory. Front Behav Neurosci. 2014;8.
82. Wotruba D, Michels L, Buechler R, et al. Aberrant coupling within and across the default mode, task-positive, and salience network in subjects at risk for psychosis. Schizophr Bull. 2014;Sep;40(5):1095-104.
83. MacIntyre TE, Igou ER, Campbell MJ, Moran AP, Matthews J. Metacognition and action: a new pathway to understanding social and cognitive aspects of expertise in sport. Front Psychol. 2014;5.
84. Metcalfe J, Schwartz BL. The ghost in the machine: Self-reflective consciousness and the neuroscience of metacognition. Oxford handbook of metamemory; 2016.
85. Fleming SM, Dolan RJ, Sci PTRSLBB. The neural basis of metacognitive ability. 2012.
86. Heyes C, Bang D, Shea N, Frith CD, Together FSMKO. The Cultural Origins of Metacognition. Trends Cogn Sci. 2020;May;24(5):349-362.
87. Shea N, Boldt A, Bang D, Yeung N, Heyes C, Frith CD. Supra-personal cognitive control and metacognition. Trends Cogn Sci. 2014;Apr;18(4):186-93.
88. Said N, Fischer H, Anders G. Contested science: Individuals with higher metacognitive insight into interpretation of evidence are less likely to polarize. Psychon Bull Rev. 2021;29:1–13.
89. Ball P, Maxmen A. The epic battle against coronavirus misinformation and conspiracy theories. Nature. 2020;May;581(7809):371-374.
90. Cooke MA, Peters ER, Fannon D, Aasen I, Kuipers E, Kumari V. Cognitive insight in psychosis: the relationship between self-certainty and self-reflection dimensions and neuropsychological measures. Psychiatry Res. 2010;30;178(2):284-9.
91. Hoven M, Lebreton M, Engelmann JB, Denys D, Luigjes J, Holst RJ. Abnormalities of confidence in psychiatry: an overview and future perspectives. Transl Psychiatry. 2019;21;9(1):268.
92. O’Connor JA, Ellett L, Ajnakina O, et al. Can cognitive insight predict symptom remission in a first episode psychosis cohort? BMC Psychiatry. 2017.
93. De Bruin AB, Gog T. Improving self-monitoring and self-regulation: From cognitive psychology to the classroom. 2012.
94. Lyons KE, Zelazo P.D. Monitoring, metacognition, and executive function: elucidating the role of self-reflection in the development of self-regulation. Adv Child Dev Behav. 2011;40:379–412.
95. Smith R. A neuro-cognitive defense of the unified self. Conscious Cogn. 2017. p. 21–39.
96. Patil AU, Ghate S, Madathil D, Tzeng OJL, Huang HW, Huang CM. Static and dynamic functional connectivity supports the configuration of brain networks associated with creative cognition. Sci Rep. 2021;8;11(1):165.
97. Hutchison RM, Womelsdorf T, Allen EA, et al. Dynamic functional connectivity: promise, issues, and interpretations. Neuroimage. Epub; 2013;80:360–378.
98. Cheng L, Zhu Y, Sun J, et al. Principal States of Dynamic Functional Connectivity Reveal the Link Between Resting-State and Task-State Brain: An fMRI Study. Int J Neural Syst. Epub; 2018;Sep;28(7):1850002.
99. Nordahl H, Wells A. Metacognitive Therapy for Social Anxiety Disorder: An A-B Replication Series Across Social Anxiety Subtypes. Front Psychol. 2018;9.
100. Goldin PR, Ziv M, Jazaieri H, Weeks J, Heimberg RG, Gross JJ. Impact of cognitive-behavioral therapy for social anxiety disorder on the neural bases of emotional reactivity to and regulation of social evaluation. Behav Res Ther. Epub 2014.
101. Gkika S, Wittkowski A, Wells A. Social cognition and metacognition in social anxiety: A systematic review. Clin Psychol Psychother. 2018;Jan;25(1):10-30.
102. Kaczkurkin AN, Foa E.B. Cognitive-behavioral therapy for anxiety disorders: an update on the empirical evidence. Dialogues Clin Neurosci. 2015;Sep;17(3):337-46.
103. Dutta A, McKie S, Downey D, et al. Regional default mode network connectivity in major depressive disorder: modulation by acute intravenous citalopram. Transl Psychiatry. 2019;15;9(1):116.
104. Hamilton JP, Farmer M, Fogelman P, Gotlib IH. Depressive Rumination, the Default-Mode Network, and the Dark Matter of Clinical Neuroscience. Biol Psychiatry. 2015;15;78(4):224-30.
105. Sambataro F, Wolf ND, Pennuto M, Vasic N, Wolf RC. Revisiting default mode network function in major depression: evidence for disrupted subsystem connectivity. Psychol Med. 2014;Jul;44(10):2041-51.
106. Yan CG, Chen X, Li L, et al. Reduced default mode network functional connectivity in patients with recurrent major depressive disorder. Proc Natl Acad Sci U S A. 2019;30;116(18):9078-9083.
107. Santarnecchi E, Sprugnoli G, Tatti E, et al. Brain functional connectivity correlates of coping styles. Cogn Affect Behav Neurosci. 2018;Jun;18(3):495-508. doi:10 3758 13415-018-0583–0587.
108. Paban V, Deshayes C, Ferrer MH, Weill A, Alescio-Lautier B. Resting Brain Functional Networks and Trait Coping. Brain Connect. 2018;Oct;8(8):475-486.
109. Xiao M, Chen X, Yi H, et al. Stronger functional network connectivity and social support buffer against negative affect during the COVID-19 outbreak and after the pandemic peak. Neurobiol Stress. Epub 2021.
110. Che X, Zhang Q, Zhao J, et al. Synchronous activation within the default mode network correlates with perceived social support. Neuropsychologia. 2014;63:26–33.
111. Nguyen AW, Chatters LM, Taylor RJ, Mouzon DM. Social Support from Family and Friends and Subjective Well-Being of Older African Americans. J Happiness Stud. 2016;Jun;17(3):959-979.
112. Ioannou M, Kassianos AP, Symeou M. Coping With Depressive Symptoms in Young Adults: Perceived Social Support Protects Against Depressive Symptoms Only Under Moderate Levels of Stress. Front Psychol. 2019;9.
113. Guo K, Zhang X, Bai S, et al. Assessing social support impact on depression, anxiety, and stress among undergraduate students in Shaanxi province during the COVID-19 pandemic of China. PLoS One. 2021;23;16(7):e0253891.
114. Xu J, Ou J, Luo S, et al. Perceived Social Support Protects Lonely People Against COVID-19 Anxiety: A Three-Wave Longitudinal Study in China. Front Psychol. 2020;11.
115. Hou T, Yin Q, Xu Y, et al. The Mediating Role of Perceived Social Support Between Resilience and Anxiety 1 Year After the COVID-19 Pandemic: Disparity Between High-Risk and Low-Risk Nurses in China. Front Psychiatry. Epub 2021 May 24.
116. Zuo B, Yang K, Yao Y, Han S, Nie S, Wen F. The relationship of perceived social support to feelings of hopelessness under COVID-19 pandemic: The effects of epidemic risk and meaning in life. Pers Individ Dif. 2021;183.
117. Stanisławski K. The Coping Circumplex Model: An Integrative Model of the Structure of Coping With Stress. Front Psychol. 2019;10.
118. Freire C, Ferradás MDM, Regueiro B, Rodríguez S, Valle A, Núñez JC. Coping Strategies and Self-Efficacy in University Students: A Person-Centered Approach. Front Psychol. Epub 2020 May 19.
119. Ozbay F, Johnson DC, Dimoulas E, Morgan CA, Charney D, Southwick S. Social support and resilience to stress: from neurobiology to clinical practice.
120. Ghosh R, Biswas P, Chatterjee S, et al. Love and emotions at the time of COVID-19. Minerva Psychiatry. 2021:156–163.
121. Zhang S, Chen JM, Kuang L, et al. Association between abnormal default mode network activity and suicidality in depressed adolescents. BMC Psychiatry. 2016;29;16(1):337.
122. Vagni M, Maiorano T, Giostra V, Pajardi D. Coping With COVID-19: Emergency Stress, Secondary Trauma and Self-Efficacy in Healthcare and Emergency Workers in Italy. Front Psychol. 2020;11.
123. Rappaport BI, Barch DM. Brain responses to social feedback in internalizing disorders: A comprehensive review. Neurosci Biobehav Rev. Epub 2020.
124. Bas-Hoogendam JM, Steenbergen H, Wee NJA, Westenberg PM. Amygdala hyperreactivity to faces conditioned with a social-evaluative meaning- a multiplex, multigenerational fMRI study on social anxiety endophenotypes. Neuroimage Clin. 2020;26.
125. Deming P, Koenigs M. Functional neural correlates of psychopathy: a meta-analysis of MRI data. Transl Psychiatry. 2020;6;10(1):133.
126. Wu X, Lin P, Yang J, Song H, Yang R, Yang J. Dysfunction of the cingulo-opercular network in first-episode medication-naive patients with major depressive disorder. J Affect Disord. 2016;200:275–283.
127. Adelstein JS, Shehzad Z, Mennes M, et al. Personality is reflected in the brain’s intrinsic functional architecture. PLoS One. 2011;2011;6(11):e27633.
128. Marblestone AH, Wayne G, Kording KP. Toward an Integration of Deep Learning and Neuroscience. Front Comput Neurosci. 2016.
129. Holtmaat A, Svoboda K. Experience-dependent structural synaptic plasticity in the mammalian brain. Nat Rev Neurosci. 2009;Sep;10(9):647-58:19693029.
130. Kondo M. Molecular mechanisms of experience-dependent structural and functional plasticity in the brain. Anat Sci Int. 2017;Jan;92(1):1-17.
131. Morera-Herreras T, Gioanni Y, Perez S, Vignoud G, Venance L. Environmental enrichment shapes striatal spike-timing-dependent plasticity in vivo. Sci Rep. 2019;19;9(1):19451.
132. Schmidt S, Gull S, Herrmann KH, et al. Experience-dependent structural plasticity in the adult brain: How the learning brain grows. Neuroimage. 2021;225.
133. Agnati LF, Guidolin D, Battistin L, Pagnoni G, Fuxe K. The neurobiology of imagination: possible role of interaction-dominant dynamics and default mode network. Front Psychol. Epub 2013 May 24.
134. Barron HC, Vogels TP, Behrens TE, Ramaswami M, A PNASUS. Inhibitory engrams in perception and memory. Jun. 2017;27;114(26):6666-6674.
135. Bandura A. Social cognitive theory of personality. Handbook of personality. 1999;2:154–196.
136. Fonagy P, Luyten P, Allison E. Epistemic Petrification and the Restoration of Epistemic Trust: A New Conceptualization of Borderline Personality Disorder and Its Psychosocial Treatment. J Pers Disord. 2015;Oct;29(5):575-609.
137. Laddis A. The Pathogenesis and Treatment of Emotion Dysregulation in Borderline Personality Disorder. ScientificWorldJournal. 2015;2015.
138. Peled A. Personality disorders disturbances of the physical brain. Med Hypotheses. Epub; 2012;Oct;79(4):487-92.
139. Costa Jr PT, McCrae RR. The Revised Neo Personality Inventory (neo-pi-r. Sage Publications, Inc; 2008.
140. Christensen AP, Cotter KN, Silvia PJ. Reopening Openness to Experience: A Network Analysis of Four Openness to Experience Inventories. J Pers Assess. Epub 2019.
141. Watson D, Ellickson-Larew S, Stanton K, et al. Aspects of extraversion and their associations with psychopathology. J Abnorm Psychol. Epub 2019.
142. Smillie LD, DeYoung CG, Hall PJ. Clarifying the Relation Between Extraversion and Positive Affect. J Pers. 2015;Oct;83(5):564-74.
143. Sosnowska J, De Fruyt F, Hofmans J. Relating Neuroticism to Emotional Exhaustion: A Dynamic Approach to Personality. Front Psychol. 2019;10.
144. Perkins AM, Kemp SE, Corr PJ. Fear and anxiety as separable emotions: an investigation of the revised reinforcement sensitivity theory of personality. Emotion. 2007;May;7(2):252-61.
145. Lahey BB. Public health significance of neuroticism. Am Psychol. 2009;May-Jun;64(4):241-56.
146. Ellenbogen MA, Ostiguy CS, Hodgins S. Intergenerational effects of high neuroticism in parents and their public health significance. Am Psychol. 2010;Feb-Mar;65(2):135-6.
147. Graziano WG, Habashi MM, Sheese BE, Tobin RM. Agreeableness, empathy, and helping: a person x situation perspective. J Pers Soc Psychol. 2007;Oct;93(4):583-99.
148. Stürmer S, Snyder M, Omoto AM. Prosocial emotions and helping: the moderating role of group membership. J Pers Soc Psychol. 2005;Mar;88(3):532-46.
149. Ozer DJ, Benet-Martínez V. Personality and the prediction of consequential outcomes. Annu Rev Psychol. 2006;57:401–421.
150. Xie X, Mulej Bratec S, Schmid G, et al. How do you make me feel better? Social cognitive emotion regulation and the default mode network. Neuroimage. Epub 2016 Jul 1.
151. Hamilton JP, Furman DJ, Chang C, Thomason ME, Dennis E, Gotlib I.H. Default-mode and task-positive network activity in major depressive disorder: implications for adaptive and maladaptive rumination. Biol Psychiatry. 2011;15;70(4):327-33.
152. Zidda F, Andoh J, Pohlack S, et al. Default mode network connectivity of fear- and anxiety-related cue and context conditioning. Neuroimage. 2018;165:190–199.
153. Beaty RE, Chen Q, Christensen AP, Qiu J, Silvia PJ, Schacter DL. Brain networks of the imaginative mind: Dynamic functional connectivity of default and cognitive control networks relates to openness to experience. Hum Brain Mapp. 2018;Feb;39(2):811-821.
154. Butler C, Zeman AZ. Neurological syndromes which can be mistaken for psychiatric conditions. J Neurol Neurosurg Psychiatry. 2005;1.
155. Zhang Q, Shen J, Wu J, et al. Altered default mode network functional connectivity in schizotypal personality disorder. Schizophr Res. 2014;Dec;160(1-3):51-6.
156. Hammad AM, Hamed R, Al-Qerem W, Bandar A, Bias HFSO, Bias P. Magical Beliefs, and Conspiracy Theory Beliefs Related to COVID-19 among the Jordanian Population. Am J Trop Med Hyg. 2021;24;104(5):1661–71.
157. Earnshaw VA, Eaton LA, Kalichman SC, Brousseau NM, Hill EC, Fox AB. COVID-19 conspiracy beliefs, health behaviors, and policy support. Transl Behav Med. 2020;8;10(4):850-856.
158. Sallam M, Dababseh D, Eid H, et al. Low COVID-19 Vaccine Acceptance Is Correlated with Conspiracy Beliefs among University Students in Jordan. Int J Environ Res Public Health. 2021;1;18(5):2407.
159. SARS-CoV-2 HMS. Covid-19, and the debunking of conspiracy theories. Rev Med Virol. Epub 2021.
160. Coutinho J, Goncalves OF, Soares JM, Marques P, Sampaio A. Alterations of the default mode network connectivity in obsessive-compulsive personality disorder: A pilot study. Psychiatry Res Neuroimaging. 2016;256:1–7.
161. Zaccari V, D’Arienzo MC, Caiazzo T, Magno A, Amico G, Mancini F. Narrative Review of COVID-19 Impact on Obsessive-Compulsive Disorder in Child, Adolescent and Adult Clinical Populations. Front Psychiatry. 2021;12.
162. Blain SD, Grazioplene RG, Ma Y, DeYoung CG. Toward a Neural Model of the Openness-Psychoticism Dimension: Functional Connectivity in the Default and Frontoparietal Control Networks. Schizophr Bull. 2020;10;46(3):540-551.
163. Maglanoc LA, Kaufmann T, Meer D, et al. Brain Connectome Mapping of Complex Human Traits and Their Polygenic Architecture Using Machine Learning. Biol Psychiatry. 2020;15;87(8):717-726.
164. Sadeh N, Verona E. Psychopathic personality traits associated with abnormal selective attention and impaired cognitive control. Neuropsychology. 2008;Sep;22(5):669-80.
165. Koob GF, Volkow ND. Neurobiology of addiction: a neurocircuitry analysis. Lancet Psychiatry. 2016;Aug;3(8):760-773.
166. Derevensky JL, Hayman V, Gilbeau L. Behavioral Addictions: Excessive Gambling, Gaming, Internet, and Smartphone Use Among Children and Adolescents. Pediatr Clin North Am. 2019;Dec;66(6):1163-1182.
167. Anderson NE, Maurer JM, Steele VR, Kiehl KA. Psychopathic traits associated with abnormal hemodynamic activity in salience and default mode networks during auditory oddball task. Cogn Affect Behav Neurosci. 2018;Jun;18(3):564-580. doi:10 3758 13415-018-0588–2.
168. Qiao L, Luo X, Zhang L, Chen A, Li H, Qiu J. Spontaneous brain state oscillation is associated with self-reported anxiety in a non-clinical sample. Sci Rep. 2020;12;10(1):19754.
169. STang Y, Long J, Wang W, et al. Aberrant functional brain connectome in people with antisocial personality disorder. Sci Rep. 2016;6.
170. Kashyap R, Bhattacharjee S, Yeo BTT, Chen SHA. Maximizing dissimilarity in resting state detects heterogeneous subtypes in healthy population associated with high substance use and problems in antisocial personality. Hum Brain Mapp. 2020;1;41(5):1261-1273.
171. Servaas MN, Riese H, Renken RJ, et al. The effect of criticism on functional brain connectivity and associations with neuroticism. PLoS One. 2013;26;8(7):e69606.
172. Stern ER, Fitzgerald KD, Welsh RC, Abelson JL, Taylor SF. Resting-state functional connectivity between fronto-parietal and default mode networks in obsessive-compulsive disorder. PLoS One. 2012;7.
173. Wang Y, Metoki A, Xia Y, Zang Y, He Y, Olson IR. A large-scale structural and functional connectome of social mentalizing. Neuroimage. 2021;236.
174. Widiger TA, Oltmanns J. Neuroticism is a fundamental domain of personality with enormous public health implications. World Psychiatry. 2017;Jun;16(2):144-145.
175. Sutton JM, Mineka S, Zinbarg RE, et al. The Relationships of Personality and Cognitive Styles with Self-Reported Symptoms of Depression and Anxiety. Cognit Ther Res. Epub; 2011;Aug;35(4):381-393.
176. Klein DN, Kotov R, Bufferd SJ. Personality and depression: explanatory models and review of the evidence. Annu Rev Clin Psychol. 2011;7:269–295.
177. Jeronimus BF, Ormel J, Aleman A, Penninx BW, Riese H. Negative and positive life events are associated with small but lasting change in neuroticism. Psychol Med. Epub 2013.
178. Sáiz-Vázquez O, Gracia-García P, Ubillos-Landa S, et al. Depression as a Risk Factor for Alzheimer’s Disease: A Systematic Review of Longitudinal Meta-Analyses. J Clin Med. 2021;21;10(9):1809.
179. Terracciano A, Bilgel M, Aschwanden D, et al. Personality Associations With Amyloid and Tau: Results From the Baltimore Longitudinal Study of Aging and Meta-analysis. Biol Psychiatry. 2021;3:S0006-3223(21)01566-3.
180. Terracciano A, Stephan Y, Luchetti M, Albanese E, Sutin AR. Personality traits and risk of cognitive impairment and dementia. J Psychiatr Res. Epub; 2017;89:22–27.
181. Singh-Manoux A, Yerramalla MS, Sabia S, et al. Association of big-5 personality traits with cognitive impairment and dementia: a longitudinal study. J Epidemiol Community Health. 2020;Oct;74(10):799-805.
182. Yoneda T, Rush J, Berg AI, Johansson B, Piccinin AM. Trajectories of Personality Traits Preceding Dementia Diagnosis. J Gerontol B Psychol Sci Soc Sci. 2017;1;72(6):922-931.
183. Byun MS, Jung JH, Sohn BK, et al. Neuroticism, conscientiousness, and in vivo Alzheimer pathologies measured by amyloid PET and MRI. Psychiatry Clin Neurosci. 2020;May;74(5):303-310.
184. Robinson MD, Tamir M. Neuroticism as mental noise: a relation between neuroticism and reaction time standard deviations. J Pers Soc Psychol. 2005;Jul;89(1):107-14.
185. Bredemeier K, Berenbaum H, Most SB, Simons DJ. Links between neuroticism, emotional distress, and disengaging attention: evidence from a single-target RSVP task. Cogn Emot. 2011;Dec;25(8):1510-9.
186. Anticevic A, Cole MW, Murray JD, Corlett PR, Wang XJ, Krystal JH. The role of default network deactivation in cognition and disease. Trends Cogn Sci. 2012;Dec;16(12):584-92.
187. Taquet M, Luciano S, Geddes H J.R., P.J. Bidirectional associations between COVID-19 and psychiatric disorder: retrospective cohort studies of 62 354 COVID-19 cases in the USA. Lancet Psychiatry. 2021;Feb;8(2):130-140.
188. Ma N, Liu Y, Fu XM, et al. Abnormal brain default-mode network functional connectivity in drug addicts. PLoS One. 2011;26;6(1):e16560.
189. Wang L, Zou F, Zhai T, et al. Abnormal gray matter volume and resting-state functional connectivity in former heroin-dependent individuals abstinent for multiple years. Addict Biol. 2016;May;21(3):646-56.
190. Zhang R, Volkow ND. Brain default-mode network dysfunction in addiction. Neuroimage. 2019;200:313–331.
191. Yau YH, Potenza MN. Gambling disorder and other behavioral addictions: recognition and treatment. Harv Rev Psychiatry. 2015;Mar-Apr;23(2):134-46.
192. Tsurumi K, Aso T, Kawada R, Murai T, Takahashi H. A positive shift in resting-state functional connectivity between the insula and default mode network regions reflects the duration of illness in gambling disorder patients without lifetime substance abuse. Psychiatry Res Neuroimaging. 2020;295.
193. Wei L, Zhang S, Turel O, Bechara A, He Q. A Tripartite Neurocognitive Model of Internet Gaming Disorder. Front Psychiatry. 2017;8.
194. Turel O, He Q, Wei L, Bechara A. The role of the insula in internet gaming disorder. Addict Biol. 2021;Mar;26(2):e12894.
195. Jeong H, Yim HW, Lee SY, et al. Reciprocal relationship between depression and Internet gaming disorder in children: A 12-month follow-up of the iCURE study using cross-lagged path analysis. J Behav Addict. 2019;1;8(4):725-732.
196. Hong JS, Kim SM, Bae S, Han DH. Impulsive Internet Game Play Is Associated With Increased Functional Connectivity Between the Default Mode and Salience Networks in Depressed Patients With Short Allele of Serotonin Transporter Gene. Front Psychiatry. 2018;9.
197. Tsui YY, Cheng C. Internet Gaming Disorder, Risky Online Behaviour, and Mental Health in Hong Kong Adolescents: The Beneficial Role of Psychological Resilience. Front Psychiatry. 2021;12.
198. Penninx BW, Milaneschi Y, Lamers F, Vogelzangs N. Understanding the somatic consequences of depression: biological mechanisms and the role of depression symptom profile. BMC Med. 2013;11.
199. Adinoff B. Neurobiologic processes in drug reward and addiction. Harv Rev Psychiatry. Epub 2004.
200. Rosenthal A, Levin ME, Garland EL, Romanczuk-Seiferth N. Mindfulness in Treatment Approaches for Addiction—Underlying Mechanisms and Future Directions. Current Addiction Reports. Epub 2021.:1–16.
201. Fang Z, Zhu S, Gillihan SJ, Korczykowski M, Detre JA, Rao H. Serotonin transporter genotype modulates functional connectivity between amygdala and PCC/PCu during mood recovery. Front Hum Neurosci. 2013;7.
202. Ravichandran S, Bhatt RR, Pandit B, et al. Alterations in reward network functional connectivity are associated with increased food addiction in obese individuals. Sci Rep. 2021;9;11(1):3386.

Most read articles by the same author(s)