Cellular morphology and functional characteristics of breast cancer cells

Main Article Content

Masami Okamoto

Abstract

When traction forces are generated in the cells underlying extracellular matrix (ECM) including artificial scaffolds, the cells feel essentially stiffness of the surrounding microenvironment and respond to applied forces and exert forces in the matrix, in which the traction forces can change cellular morphology and cytoskeletal structure. To date, analysis of cell morphology, including quantitative measurements such as cytoplasm roundness, cytoplasm elongation factor, nuclear elongation factor, ratio nuclear area to cytoplasm area ratio (AN/AC), nuclear dimension, and nuclear height, has been widely used in cancer diagnostics and hematology. Increasing evidence suggests that the extracted morphological features such as cell area and the length of major and minor axes, could also be used to analyze the dynamic changes of cells in diseases of the nervous system and cellular stress related phenomena. Furthermore, multivariate analyses of morphological data suggest that quantitative cytology may be a useful adjunct to conventional tests for the selection of new substances.


Thus, understanding the interaction between microenvironment and cancer cells via cellular morphology is critical subject to tackle metastatic spread of cancer cells and its many associated issues. In this topic, the cellular morphological parameters and functional characteristics of cancer cells are summarized.

Keywords: breast cancer cells, cellular morphology, metastasis, diagnosis

Article Details

How to Cite
OKAMOTO, Masami. Cellular morphology and functional characteristics of breast cancer cells. Medical Research Archives, [S.l.], v. 11, n. 4, apr. 2023. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/3779>. Date accessed: 23 nov. 2024. doi: https://doi.org/10.18103/mra.v11i4.3779.
Section
Review Articles

References

1. Przybyla L, Muncie J.M, Weaver V.M. Mechanical Control of Epithelial-to-Mesenchymal Transitions in Development and Cancer. Annu. Rev. Cell Dev. Biol. 2016;32:527-554.

2. Wang N, Tytell J.D, Ingber D.E. Mechanotransduction at a distance: mechanically coupling the extracellular matrix with the nucleus. Nat. Rev. Mol. Cell Biol. 2009;10:75-82.

3. Miyoshi H, Adachi T. Topography design concept of a tissue engineering scaffold for controlling cell function and fate through actin cytoskeletal modulation. Tissue Eng. B. 2014;20:609-627.

4. Sun Y.B, Chen C.S, Fu J.P. Forcing stem cells to behave: a biophysical perspective of the cellular microenvironment. Annu, Rev. Biophys. 2012;41:519-542.

5. Muller P, Langenbach A, Kaminski A. Modulating the Actin Cytoskeleton Affects Mechanically Induced Signal Transduction and Differentiation in Mesenchymal Stem Cells. J. Rychly, PloS One. 2013;8:e71283.

6. Zhang R, Ma P.X. Porous poly(l-lactic acid)/apatite composites created by biomimetic process. J. Biomed. Mater. Res. 1999;45:285-293.

7. Wen J.H, Vincent L.G, Fuhrmann A, Choi Y.S, Hribar K.C, Taylor-Weiner H, Chen S.C, Engler A.J. Interplay of matrix stiffness and protein tethering in stem cell differentiation. Nat. Mater. 2014;13(10):979-987.

8. Dalby M.J, Gadegaard N, Tare R, Andar A, Riehle M.O, Herzyk P, Wilkinson C.D.W, Oreffo R.O.C. The control of human mesenchymal cell differentiation using nanoscale symmetry and disorder. Nat. Mater. 2007;6:997-1003.

9. Mih J.D, Marinkovic A, Liu F, Sharif A.S, Tschumperlin D.J, Matrix stiffness reverses the effect of actomyosin tension on cell proliferation. J Cell Sci. 2012;125:5974-5983.

10. Pelham R.J, Wang Y.L. Cell locomotion and focal adhesions are regulated by substrate flexibility. PNAS (Proc. Natl. Acad. Sci. U.S.A.). 1997;94(25):13661-13665.

11. Fraley S.I, Feng Y, Krishnamurthy R, Kim D-H., Celedon A, Longmore G.D, Wirtz D. A distinctive role for focal adhesion proteins in three-dimensional cell motility. Nat. Cell. Biol. 2010;12:598-604.

12. McAllister S.S, Weinberg R.A. The tumour-induced systemic environment as a critical regulator of cancer progression and metastasis. Nature Cell Biology. 2014;16:717-727.

13. Taddei M.L, Giannoni E, Comito G, Chiarugi P, Microenvironment and tumor cell plasticity: An easy way out. Cancer letters. 2013;341:80-96.

14. Park C.C, Bissell M.J, Barcellos-Hoff M.H. The influence of the microenvironment on the malignant phenotype. Molecular Medicine Today. 2000;6:324-329.

15. Gikes D.M, Semenza G.L, Wirtz D. Hypoxia and the extracellular matrix: drivers of tumour metastasis. Nature Reviews. 2014;14:430- 439.

16. Xiong G.F, Xu R. Function of cancer cell-derived extracellular matrix in tumor progression. Journal of cancer metastasis and treatment. 2016;2:357-364.

17. Insua-Rodriguez J, Oskarsson T, The extracellular matrix in breast cancer. Advanced drug delivery reviews. 2016;97:41-55.

18. Lu P, Weaver V.M, Werb Z. The extracellular matrix: A dynamic niche in cancer progression. Journal of Cell Biology. 2012;196:395-406.

19. Humphrey J.D, Dufresne E.R, Schwartz M.A. Mechanotransduction and extracellular matrix homeostasis. Nature Reviews 2014;15:802-811.

20. Butcher D.T, Alliston T, Weaver V.M. A tense situation: forcing tumour progression. Nature Reviews Cancer 2009;9:108-122.

21. Paszek M.J, Zahir N, Johnson K.R, Lakins J.N, Rozenberg G.I, Gefen A, Reinhart-King C.A, Margulies S.S, Dembo M, Boettiger D, Hammer D.A, Weaver V.M. Tensional homeostasis and the malignant phenotype. Cancer cell. 2005;8:241-254.

22. Pelham R.J, Wang Y.L. Cell locomotion and focal adhesions are regulated by substrate flexibility. PNAS 1997;94:13661.

23. Wang H-B, Dembo M, Wang Y-L. Substrate flexibility regulates growth and apoptosis of normal but not transformed cells. American journal of physiological cell physiology. 2000;279:1345-1350.

24. Ulrich T.A, De Juan Pardo E.M, Kumar S. The Mechanical Rigidity of the Extracellular Matrix Regulates the Structure, Motility, and Proliferation of Glioma Cells. Cancer Research. 2009;69:4167-4174.

25. Ishihara S, Yasuda M, Harada I, Mizutani T, Kawabata K, Haga H. Substrate stiffness regulates temporary NF-κB activation via actomyosin contractions. Experimental Cell Research. 2013;319:2916-2927.

26. Bharti A.C, Aggarwal B.B. Nuclear factor-kappa B and cancer: its role in prevention and therapy. Biochemical pharmacology. 2002;64:883-888.

27. Provenzano P.P, Eliceiri K.W, Campbell J.M, Inman D.R, White J.D, Keely P.J. Collagen reorganization at the tumor-stromal interface facilitates local invasion. BMC medicine. 2006;4:38.

28. Riching K.M, Cox B.L, Salick M.R, Pehlke C, Riching A.S, Ponik S.M, Bass B.R, Crone W.C, Jiang Y, Weaver A.M, Eliceiri K.W, Keely P.J. 3D Collagen Alignment Limits Protrusions to Enhance Breast Cancer Cell Persistence. Biophysical Journal. 2014;107:2546-2558.

29. Foroni L, Vasuri F, Valente S, Gualandi C, Focarete M.L, Caprara G, Scandola M, D’Errico-Grigioni A, Pasquinelli G. The role of 3D microenvironmental organization in MCF-7 epithelial–mesenchymal transition after 7 culture days. Experimental Cell Research. 2013;319:1515-1522.

30. Girard Y.K, Wang C, Ravi S, Howell M.C, Mallela J, Alibrahim M, Green R, Hellermann G, Mohapatra S.S, Mohapatra S. A 3D Fibrous Scaffold Inducing Tumoroids: A Platform for Anticancer Drug Development. Plos One. 2013;8:e75345.

31. Saha S, Duan X, Wu L, Lo P, Chen H, Wang Q. Electrospun fibrous scaffolds promote breast cancer cell alignment and epithelial-mesenchymal transition. Langmuir. 2012;28:2028-2034.

32. Kalluri R, Weinberg R.A. The basics of epithelial-mesenchymal transition. The journal of clinical investigation. 2009;119:1420-1428.

33. Moustakas A, Heldin C-H. Signaling networks guiding epithelial–mesenchymal transitions during embryogenesis and cancer progression. Cancer Science. 2007;98:1512-1520.

34. Tidball J.D. Inflammatory processes in muscle injury and repair. American Journal of Physiology Regulatory Integrative and Comparative Physiology. 2005;288:R345-R353.

35. Eming S.A, Krieg T, Davidson J.M. Inflammation in wound repair: molecular and cellular mechanisms. Journal of Investigative Dermatology. 2007;127:514-525.

36. Midwood K.S, Williams L.V, Schwarzbauer J.E, Tissue repair and the dynamics of the extracellular matrix. The International Journal of Biochemistry & Cell Biology. 2004;36:1031-1037.

37. Domura R, Sasaki R, Okamoto M, Hirano M, Kohda K, Napiwocki B, Turng L-S. Comprehensive study on cellular morphologies, proliferation, motility, and epithelial–mesenchymal transition of breast cancer cells incubated on electrospun polymeric fiber substrates. J Mater Chem B. 2017;5:2588-2600.

38. Sasaki R, Domura R, Okamoto M. Cellular morphologies, motility, and epithelial–mesenchymal transition of breast cancer cells incubated on electrospun polymeric fiber substrates in hypoxia. Mater Today Chem. 2019;11:29-41.

39. Schrader J, Gordon-Walker T.T, Aucott R.L, Van Deemter M, Quaas A, Walsh S, Benten D, Forbes S.J, Wells R.G, Iredale J.P. Matrix stiffness modulates proliferation, chemotherapeutic response, and dormancy in hepatocellular carcinoma cells. Hepatology. 2011;53:1192-1205.

40. Park Y, Depeursinge C, Popescu G. Quantitative phase imaging in biomedicine. Nat. Photon. 2018;12:578-589.

41. Benzerdjeb N, Garbar C, Camparo P, Sevestre H. Digital holographic microscopy as screening tool for cervical cancer preliminary study. Cancer Cytopathol. 2016;124:573-580.

42. Chen CL, Mahjoubfar A, Tai LC, Blaby IK, Huang A, Niazi KR, Jalali B. Deep learning in label-free cell classification. Sci Rep. 2016;6:21471.

43. Roitshtain D, Wolbromsky L, Bal E, Greenspan H, Satterwhite LL, Shaked NT. Quantitative phase microscopy spatial signatures of cancer cells. Cytometry A. 2017;91A:482-493.

44. Strbkova L, Zicha D, Vesely P, Chmelik R. Automated classification of cell morphology by coherence-controlled holographic microscopy. J Biomed Opt. 2017;22:221-229.

45. Dickson MA, Schwartz GK. Development of cell-cycle inhibitors for cancer therapy. Curr Oncol. 2009;16:36–43.

46. Ishikawa Y, Sasaki R, Domura R, Okamoto M. Cellular morphologies, motility, and epithelial–mesenchymal transition of breast cancer cells incubated on viscoelastic gel substrates in hypoxia. Mater Today Chem. 2019;13:8-17.

47. Chaudhuri P.K, Pan C.Q, Low B.C, Lim C.T. Topography induces differential sensitivity on cancer cell proliferation via Rho-ROCK-Myosin contractility. Sci. Rep. 2016;6:19672.

48. Wu J, Chu C-C. Block copolymer of poly(ester amide) and polyesters: Synthesis, characterization, and in vitro cellular response. Acta Biomater. 2012;8:4314-4323.

49. Tsuji T, Ibaragi S, G-F. Hu. Epithelial-mesenchymal transition and cell cooperativity in metastasis. Cancer Res. 2009;69:7135-7139.

50. Allemani C, Weir H.K, Carreira H, Harewood R, Spika D, Wang X.S, Bannon F, Ahn J.V, Johnson C.J, Bonaventure A, Marcos-Gragera R, Stiller C, Azevedo E Silva G, Chen W.Q, Ogunbiyi O.J, Rachet B, Soeberg M.J, You H, Matsuda T, Bielska-Lasota M, Storm H, Tucker T.C, Coleman M.P. Global surveillance of cancer survival 1995–2009: analysis of individual data for 25 676 887 patients from 279 population-based registries in 67 countries (CONCORD-2). Lancet. 2015;385:977-1010.

51. Hanahan D, Weinberg R.A. Hallmarks of Cancer: The Next Generation. Cell. 2011;144(5):646-674.

52. Stacy N.I, Isaza R, Wiedner E. First report of changes in leukocyte morphology in response to inflammatory conditions in Asian and African elephants (Elephas maximus and Loxodonta africana). PLoS One. 2017;12(9):e0185277.

53. Pekny M, Pekna M, Messing A, Steinhauser C, Lee J.M, Parpura V, Hol E.M, Sofroniew M.V, Verkhratsky A. Astrocytes: a central element in neurological diseases. Acta Neuropathol. 2016;131(3):323-345.

54. Chen S, Zhao M, Wu G, Yao C, Zhang J. Recent advances in morphological cell image analysis. Comput Math Methods Med. 2012:2012101536.