The role of natural rubber latex nanoparticles in tissue engineering

Main Article Content

Masami Okamoto http://orcid.org/0000-0002-5732-1652

Abstract

Natural rubber latex is derived from the lactiferous sap of the Hevea brasiliensis (para rubber tree) and has been used in traditional medicine due to its bioactive compounds. There are over 35,000 species of plants that produce latex. Recently, NRL has shown promise in tissue engineering for the replacement and regeneration of various tissues, such as skin, eardrums, bones, and dental alveoli. This presents a unique opportunity to repair or replace failing organs or tissues. This review highlights the current development of Natural rubber latex in tissue engineering, and identifies importance for investigation on cytotoxicity of Natural rubber latex nanoparticles. In addition, promising results regarding the current challenges and perspectives of Natural rubber latex-based tissue engineering is discussed.

Keywords: Natural rubber latex, Nanoparticles, Tissue engineering, Cytotoxicity, Biocomposites

Article Details

How to Cite
OKAMOTO, Masami. The role of natural rubber latex nanoparticles in tissue engineering. Medical Research Archives, [S.l.], v. 12, n. 8, aug. 2024. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/5604>. Date accessed: 06 sep. 2024. doi: https://doi.org/10.18103/mra.v12i8.5604.
Section
Review Articles

References

1 Gurib-Fakim A. Medicinal plants: traditions of yesterday and drugs of tomorrow, Mol Aspects Med. 2006; 27(1):1–93.
2 Konno K, Hirayama C, Nakamura M, Tateishi K, Tamura Y, Hattori M, Kohno K. Papain protects papaya trees from herbivorous insects: role of cysteine proteases in latex, The Plant Journal. 2004;37(3):370–378.
3 Tang C, Huang D, Yang J, Liu S, Sakr S, Li H, Zhou Y, Qin Y. The sucrose transporter HbSUT3 plays an active role in sucrose loading to laticifer and rubber productivity in exploited trees of Hevea brasiliensis (para rubber tree), Plant Cell Environ. 2010;33:1708–1720.
4 Ereno C, Catanzaro Guimaraes SA, Pasetto S, Herculano RD, Silva CP, Graeff CFO, Tavano O, Baffa O, Kinoshita A. Latex use as an occlusive membrane for guided bone regeneration, J Biomed Mater. Res. A. 2010;95A:932–939.
5 Herculano RD, Silva CP, Ereno C, Catanzaro Guimaraes SA, Kinoshita A, de Oliveira Graeff C.F. Natural Rubber Latex Used as Drug Delivery System in Guided Bone Regeneration (GBR), Mater Res. 2009;12(2):253–256.
6 Sampaio RB, Mendonca RJ, Simioni AR, Costa RA, Siqueira RC, Correa VM, Tedesco AC, Haddad A, Netto JC, Jorge R. Rabbit Retinal Neovascularization Induced by Latex Angiogenic-Derived Fraction: An Experimental Model, Current Eye Res. 2010;35(1):56–62.
7 Floriano JF, Silveira da Mota LSL, Furtado EL, Rossetto VJV, Graeff CFO. Biocompatibility studies of natural rubber latex from different tree clones and collection methods, J Mater Sci: Mater Med. 2014;25:461–470.
8 Almedia LM, Floriano JF, Ribeiro TP, Mango LN, da Mota LS, Peixoto N, Mrue´ F, Melo-Reis P, Lino Junior Rde S, Graeff CF, Gonçalves PJ. Hancornia speciosa latex for biomedical applications: physical and chemical properties, biocompatibility assessment and angiogenic activity, J Mater Sci: Mater Med. 2014;25:2153–2162.
9 Mrué, F. Neoformação tecidual induzida por biomembrana de látex natural com polilisina: aplicabilidade na neoformação esofágica e da parede abdominal. Estudo experimental em cães, Faculdade de Medicina Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil, 2000; Accessed October 3, 2023.
http://dedalus.usp.br/F/N465C3LQTU7JPUHYEVC1P612IH9NXEL7VINQI4SN71IQ2T13E5-33251?func=full-set-set&set_number=000444&set_entry=000008&format=999.
10 Balabanian CA, Coutinho-Netto J, Lamano-Carvalho TL, Lacerda SA, Brentegani LG. Biocompatibility of natural latex implanted into dental alveolys of rats, J Oral Sci. 2006;48(4):201–205.
11 Furuya M, Shimono N, Yamazaki K, Domura r, Okamoto M. Cytotoxicity and anticancer activity of natural rubber latex particles for cancer cells, Materials Today Chem. 2017; 5:63–71.
12 Lam KL, Yang KL, Sunderasan E, Ong MT. Latex C-serum from Hevea brasillensis induces non-apoptotic cell death in hepatocellular carcinoma cell line (HepG2). Cell Prolif. 2012;45:577–585.
13 Furuya M, Shimono N, Yamazaki K, Domura R. Okamoto M. e-J Soft Mater. 2017;12:1–10.
14 Borges FA, de Almeida Filho E, Miranda MC, dos Santos ML, Herculano RD, Guastaldi AC. Natural rubber latex coated with calcium phosphate for biomedical application, J Biomater Sci Polym Ed. 2015;26 (17):1256–1268.
15 Butcher DT, Alliston T, Weaver VM. A tense situation: forcing tumour progression. Nat Rev Cancer. 2009;9:108-22.
16 Moura JM, Ferreira JF, Marques L, Holgado L, Graeff C.F, Kinoshita A. Comparison of the performance of natural latex membranes prepared with different procedures and PTFE membrane in guided bone regeneration (GBR) in rabbits, J Mater Sci: Mater Med. 2014;25:2111–2110.
17 Mendonça RJ, Maurício VB, Teixeira Lde B, Lachat JJ, Coutinho-Netto J. Increased vascular permeability, angiogenesis and wound healing induced by the serum of natural latex of the rubber tree Hevea brasiliensis, Phytother Res. 2010;24(5):764–768.
18 Furuya M, Shimono N, Okamoto M. Fabrication of biocomposites composed of natural rubber latex and bone tissue derived from MC3T3-E1 mouse preosteoblastic cells. Nanocomposites. 2017;3:76–83.
19 Verron E, Khairoun I, Guicheux J, Bouler JM. Calcium phosphate biomaterials as bone drug delivery systems: A review. Drug Discovery Today.2010; 15(13–14):547–552.
20 Grayson WL, Bunnell BA, Martin E, Frazier T, Hung BP, Gimble JM. Stromal cells and stem cells in clinical bone regeneration.Nature Reviews. Endocrinology. 2015;11(3):140–150.
21 Scarfì S. Use of bone morphogenetic proteins in mesenchymal stem cell stimulation of cartilage and bone repair. World J Stem Cells. 2016; 8(1):1–12.
22 Singh S, Wu BM, Dunn JC. The enhancement of VEGF‐mediated angiogenesis by polycaprolactone scaffolds with surface cross‐linked heparin. Biomaterials. 2011;32(8):2059–2069.
23 Rosa SSRF, Rosa MFF, Fonseca MAM, Luz GVDS, Avila CFD, Domínguez AGD, Richter VB. Evidence in practice of tissue healing with latex biomembrane: Integrative review. J Diabetes Research. 2019:7457295.
24 Frade MA, Assis RV, Coutinho‐Netto J, Andrade TA, Foss NT. The vegetal biomembrane in the healing of chronic venous ulcers. Anais Brasileiros de Dermatologia. 2012;87(1):45–51.
25 Mendonça RJ, Maurício VB, Coutinho‐Netto J. Increased vascular permeability, angiogenesis and wound healing induced by the serum of natural latex of the rubber tree Hevea brasiliensis. Phytotherapy Research. 2010;24(5):764–768.
26 Park JS, Yang HN, Woo DG, Jeon SY, Do H-J, Lim H-Y, Kim J-H, Park K-H. Chondrogenesis of human mesenchymal stem cells mediated by the combination of SOX trio SOX5, 6, and 9 genes complexed with PEI-modified PLGA nanoparticles, Biomaterials. 2011;32:3679–3688.
27 Shi D, Xu X, Ye Y, Song K, Cheng Y, Di J, Hu Q, Li J, Ju H, Jiang Q, GuZ. Photo-cross-linked scaffold with Kartogenin-encapsulated nanoparticles for cartilage regeneration, ACS Nano. 2016;10:1292–1299.
28 Kinoshita M, Okamoto Y, Furuya M, Okamoto M. Biocomposites composed of natural rubber latex and cartilage tissue derived from human mesenchymal stem cells, Mater Today Chem. 2019;12:315–323.
29 Okamoto Y, Kinoshita M, Okamoto M. Fabrication of cartilage/natural rubber latex biocomposites derived from human mesenchymal stem cells in hypoxia, Nanocomposites. 2020;6:137–148.
30 Villasante A, Vunjak-Novakovic G. Tissue-engineered models of human tumors for cancer research, Expert Opin Drug Discov. 2015;10:257–268.
31 Wang YC, Ludwigson M, Lakes RS. Deformation of extreme viscoelastic metals and composites, Mater. Sci. Eng A.2004;370:41–49.
32 Asheesh B, Feeley BT, Williams III RJ. Management of articular cartilage defects of the knee, J Bone Joint Surg. 2010;92:994–1009.
33 Hodge WA, Fijan RS, Carlson KL, Burgess RG, Harris WH, Mann RW. Contact pressures in the human hip joint measured in vivo, Proc Natl Acad Sci USA. 1986; 83(9):2879–2883.
34 Mow VC, Zhu W, Lai WM, Hardingham TE, Hughes C, Muir H. The influence of link protein stabilization on the viscometric properties of proteoglycan aggregate solution, Biochim Biophys Acta. 1989;992(2):201–208.