Sudden Infant Death Syndrome in the Context of the Future of Vaccination, and the Question of Systemic or Mucosal Immunity

Main Article Content

Paul N. Goldwater Reginald M. Gorczynski Robyn A. Lindley Edward J. Steele

Abstract

We review the current knowledge regarding how best to approach development of lasting immunity in infancy without inducing unwanted adverse vaccine effects among which could be sudden infant death syndrome and neurological developmental problems. The review also addresses current problems in vaccine development generally including formulating infant vaccination schedules based on knowledge obtained in trials conducted in adults, a process so fundamentally flawed to warrant intense review. We explain the two key mechanisms by which the infant and adult human protects itself from foreign pathogens these being the very complex but integrated immune systems – the Th1-based Mucosal Immune System and the Th2-based Systemic Immune System. The potential issue of hyperimmunization is discussed and the review addresses the latest developments that could provide a useful path to safer immunisation in infancy.

Article Details

How to Cite
GOLDWATER, Paul N. et al. Sudden Infant Death Syndrome in the Context of the Future of Vaccination, and the Question of Systemic or Mucosal Immunity. Medical Research Archives, [S.l.], v. 13, n. 6, june 2025. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/6667>. Date accessed: 15 july 2025. doi: https://doi.org/10.18103/mra.v13i6.6667.
Section
Research Articles

References

1. Fine PEM, Williams TN, Aaby P, Kallander K, Moulton LH, Flanagan KL et al. Epidemiological studies of the ‘non-specific effects’ of vaccines: I – data collection in observational studies. Trop Med Int Health.2009;14:969-976. doi:10.1111/j.1365-3156.2009.02301.x.

2. Farrington CP, Firth MJ, Moulton LH, Ravn H, Andersen PK, Evans S et al. Epidemiological studies of the non-specific effects of vaccines: II – methodological issues in the design and analysis of cohort studies. Trop Med Int Health. 2009;14:977–985. doi:10.1111/j.1365-3156.2009.02302.x

3. Goldwater PN, Gorczynski RM, Steele EJ.: Sudden infant death syndrome: a review and re-evaluation of vaccination risks. Medical Research Archives, 2025: 3(3). https://esmed.org/MRA/mra/article/view/6349

4. Goldwater PN.: The science (or nonscience) of research into sudden infant death syndrome (SIDS). Front. Pediatr. 2022;10:865051. DOI:10.3389/fpe d.2022.865051.

5. Miller NZ, Goldman S. :Infant mortality rates regressed against number of vaccine doses routinely given: Is there a biochemical or synergistic toxicity? Hum Exp Toxicol. 2011: 30:1420–1428. DOI: 10.117 7/0960327111407644

6. Goldman GS, Miller NZ.: Reaffirming a positive correlation between number of vaccine doses and infant mortality rates: a response to critics. Cureus 2023;15(2), e34566. DOI 10.7759/cureus.34566.

7. Bretscher P.: What determines the class of immunity an antigen Induces? A foundational question whose rational consideration has been undermined by the information overload. Biology (Basel). 2023a;12:1253. doi: 10.3390/biology1209 1253.

8. Bretscher P.: Rediscovering the Immune System as an Integrated Organ. Freisen Press. Victoria, BC, 2016.ISBN: 978-1-46027406-4.

9. Bretscher P.: The Foundations of Immunology and their Pertinence to Medical Interventions. Cambridge Scholars Publishing. Lady Stephenson Library, Newcastle upon , Tyne , UK, 2024. ISBN: 978-1-0364-1257-9

10. Lobaina Y, Chen R, Suzarte E, et al.: The nucleocapsid protein of SARS-CoV-2, combined with ODN-39M, Is a potential component for an intranasal bivalent vaccine with broader functionality. Viruses. 2024;16:418.
https://doi.org/10.3390/v16030418.

11. Mosmann TR, Coffman RL.:TH1 and TH2 cells: different patterns of lymphokine secretion lead to different functional properties. Annu Rev Immunol. 1989;7:145 -173. DOI: 10.1146/annurev.iy.07.0401 89.001045.

12. Morens DM, Taubenberger JK, Fauci AS.: Rethinking next-generation vaccines for coronaviruses, influenzaviruses, and other respiratory viruses. Cell Host & Microbe. 2023;31:146-157. DOI:10.101 6/j.chom.2022.11.016.

13. McLure CA, Hinchliffe P, Lester S, et al: Genomic evolution and polymorphism: segmental duplications and haplotypes at 108 regions on 21 chromosomes. Genomics 2013;103: 15-26 DOI:10.1016/j.ygeno.2013.02.011

14. Hall NE, Mamrot J, Frampton C, et al. 2020 Blood and saliva-derive exomes from healthy Caucasian subjects do not display overt evidence of somatic mosaicism. Mut Res Fund Mech Mutagen 2020; 821 (2020) 111705
https://doi.org/10.1016/j.mrfmmm.2020.111705.

15. Dou Y, Gold DHD, Luquette LJ, et al.: Detecting somatic mutations in normal cells. Trends Genet. 2018;34:545–557, https://doi.org/10.1016/j.tig.2018.04.003.

16. Lodato MA, Rodin RE, Bohrson CL, et al.: Aging and neurodegeneration are associated with increased mutations in single human neurons. Science 2018;359:555–559, https://doi.org/10.1126/science.aao4426.

17. Vattathil S, Scheet P.: Extensive hidden genomic mosaicism revealed in normal tissue, Amer. J. Hum. Genet 2016;98;571–578, https://doi.org/10.1016/j.ajhg.2016.02.003.

18. Fraga MF, Ballestar E, Paz MF, et al.: Epigenetic differences arise during the lifetime of monozygotic twins. Proc Nat Acad Sci USA. 2005;102:10604-9. https://doi.org/10.1073/pnas.0500398102.

19. Steele EJ.: Ancestral Haplotypes. Our genomes have been shaped in the deep past . Nearurban Publishing. ISBN 978-0-9864115-0-2. 2015.
https://www.amazon.com.au/Ancestral-Haplotypes-Genomes-Have-Shaped/dp/0986411507. A copy is at
https://www.academia.edu/128651012/Steele_EJ_2015_Ancestral_Haplotypes_2nd_Impression_email_ver_copy.

20. Russell M. 2022. Review of “A single dose of COVID-19 mRNA vaccine induces airway immunity in COVID-19 convalescent patients” Qeios (2022), KOTETH. doi: 10.32388/K0TETH.

21. Russell MW, Mestecky J.: Mucosal immunity: The missing link in comprehending SARS-CoV-2 infection and transmission. Front Immunol. 2022; 13:957107. doi: 10.3389/fimmu.2022.957107.

22. Desombere I, Willems A, Leroux-Roels G.: Response to hepatitis B vaccine: multiple HLA genes are involved. Tissue Antigens. 1998;5:593–604.

23. Poland GA, Ovsyannikova IG, Jacobson RM, et al.: Identification of an association between HLA class II alleles and low antibody levels after measles immunization. Vaccine. 2001;20(34):430–438. DOI:10.1016/s0264-410x(01)00346-2.

24. Wang C, Tang J, Song W, et al. : HLA and cytokine gene polymorphisms are independently associated with responses to hepatitis B vaccination. Hepatology. 2004;39(4):978–988. DOI:10.1002/he p.20142.

25. Frafjord A, Buer L, Hammarstrom C, et al.: The immune landscape of human primary lung tumors is Th2 skewed. Front Immunol. 2021 Nov 18:12: 764596.doi: 10.3389/fimmu.2021.764596. eCollection 2021.DOI: 10.3389/fimmu.2021.764596.

26. Corthay A.: How do regulatory T cells work? Scand J Immunol. 2009 :70:326-336. doi: 10.111 1/j.1365-3083.2009.02308.x. DOI: 10.1111/j.1365-3083.2009.02308.x.

27. Menon JN, Bretscher PA.: Parasite dose determines the Th1/Th2 nature of the response to Leishmania major independently of infection route and strain of host or parasite. Eur J Immunol. 1998;28: 4020-4028. DOI:10.1002/(SICI)1521-4141(199812)28:12<4020::AID-IMMU4020>3.0.CO;2-3

28. Bretscher PA.:The problem of host and pathogen genetic variability for developing strategies of universally efficacious vaccination against and personalised immunotherapy of tuberculosis: potential solutions? Int J Mol Sci. 2023b;24:1887. doi: 10.33 90/ijms24031887.

29. Kiros TG, Power CA, Wei G, et al.: 2010. Immunization of newborn and adult mice with low numbers of BCG leads to Th1 imprints and enhanced protection upon BCG challenge. Immunother. 2010;2: 25-35. DOI: 10.2217/imt.09.80

30. Power CA, Wei G, Bretscher, PA.1998. Mycobacterial dose defines the Th1/Th2 nature of the immune response independently of whether immunisation is by intravenous, subcutaneous or intradermal route. Infect Immun. 1998;66: 57.43-5750. DOI:10.1128/IAI.66.12.5743-5750.1998.

31. Mamrot J, Balachandran S, Steele E.J, et al.: Molecular model linking Th2 polarized M2 tumour-associated macrophages with deaminase-mediated cancer progression mutation signatures. Scand. J. Immunol. 2019; 89: e12760. DOI:10.1111/sji.12760.

32. Jung SW, Jeon JJ, Kim YH, et al: Long-term risk of autoimmune diseases after mRNA-based SARS-CoV2 vaccination in a Korean, nationwide, population-based cohort study. Nat Comm. 2024;15(1):6181. https://doi.org/10.1038/s41467-024-50656-8.

33. Giannotta G, Murrone A, Giannotta N.: COVID-19 mRNA vaccines: the molecular basis of some adverse events. Vaccines. 2023;11(4):747. https://doi.org/10.3390/vaccines11040747.

34. Seneff S, Nigh G, Kyriakopoulos AM, et al.: Innate immune suppression by SARS-CoV-2 mRNA vaccinations: the role of G-quadruplexes, exosomes, and microRNAs. Food Chem Toxicol. 2022 ;164: 113008. https://doi.org/10.1016/j.fct.2022.113008.

35. Pfizer Australia 8 January 2021, Nonclinical Evaluation Report BNT162b2 [mRNA] COVID-19 vaccine (COMIRNATYTM), Submission No: PM-2020-05461-1-2 to the Therapeutic Goods Administration, Australian Government, Department of Health, Table 4-2, page 45. https://www.tga.gov.au/sites/default/files/foi-2389-06.pdf.

36. Burcham P.: An injured toxicologist reflects on COVID mRNA vaccine (Part II). Quadrant.2025 Vol LXIX (No. 616): 26-29 https://quadrant.org.au/magazine/health/an-injured-toxicologist-on-covid-mrna-vaccines-part-ii/

37. Bretscher PA, Wei G, Menon H, et al.: 1992. Establishment of stable, cell- mediated immunity that makes “susceptible” mice resistant to Leishmania major. Science. 1992;257: 539-542. DOI: 10.1126/science.1636090.

38. Buddle BM, de Lisle GW, Pfeffer A, et al.: Immunological responses and protection against Mycobacterium bovis in calves vaccinated with a low dose of BCG. Vaccine 1995;13: 1123-1130. DOI: 10.1016/0264-410x(94)00055-r.

39. Gadad BS, Li W, Yazdani U, et al.: Administration of thimerosal-containing vaccines to infant rhesus macaques does not result in autism-like behavior or neuropathology. Proc Natl Acad Sci U S A. 2015;112:12498-503. doi: 10.107 3/pnas.1500968112.

40. Center News. Washington National Primate Research Center 2015 “ No Evidence of Autism-Like Behavior after Vaccination of Infants- Infant Rhesus Macaques Show Normal Development after Receiving Pediatric Vaccines.” https://wanprc.uw.edu/no-evidence-of-autism-like-behavior-after-vaccination-of-infants/.

41. Lei H, Hong W, Yang J, et al.: Intranasal delivery of a subunit protein vaccine provides protective immunity against JN.1 and XBB-lineage variants. Signal Transduct Target Ther. 2024;9(1):311.
doi: 10.1038/s41392-024-02025-6.

42. Cooper PD, McComb C, Steele EJ.: The adjuvanticity of Algammulin, a new vaccine adjuvant. Vaccine.1991;9(6):408-445. DOI: 10.1016/0264-410x(91)90127-r.

43. Bullmore E. The Inflamed Mind. A radical new approach to depression. Simon & Schuster, London, New York, 2018.

44. Pabst R, Russell MW, Brandtzaeg P.: Tissue distribution of lymphocytes and plasma cells and the role of the gut. Trends Immunol. 2008;29:206-208; doi: 10.1016/j.it.2008.02.006.

45. Mestecky J. The common mucosal immune system and current strategies for induction of immune response in external secretions. J Clin Immunol. 1987;7:265–276. doi: 10.1007/BF00915547.

46. Russell MW, Moldoveanu Z, Ogra PL, et al.: Mucosal immunity in COVID-19: A neglected but critical aspect of SARS-CoV-2 infection. Front Immunol. 2020;11:611337. doi: 10.3389/fimmu.2020.611337.

47. Brandtzaeg P.: Potential of nasopharynx-associated lymphoid tissue for vaccine responses in the airways. Am J Respir Crit Care Med. 2011: 183:1595-604. doi: 10.1164/rccm.201011-1783OC.

48. Gleeson M, Cripps AW.: Development of mucosal immunity in the first year of life and relationship to sudden infant death syndrome. FEMS Immuno Med Microbiol 2004;42 : 21–33. DOI: 10.1016/j.femsim.2004.06.012.

49. Subramanian SV, Kumar A. Increases in COVID-19 are unrelated to levels of vaccination across 68 countries and 2947 counties in the United States. Eur. J. Epidemiol 2021;36(12):1237-40.
https://doi.org/10.1007/s10654-021-00808-7.

50. Hansen CH, Michlmayr D, Gubbels SM, et al : Assessment of protection against reinfection with SARS-CoV-2 among 4 million PCR- tested individuals in Denmark in 2020: A population-level observational study. Lancet 2021;397:1204-1212. DOI: 10.1016/S 0140-6736(21)00575-4.

51. Martinuzzi E, Benzaquen J, Guerin O, et al.: A single dose of BNT162b2 messenger RNA vaccine induces airway immunity in severe acute respiratory syndrome coronavirus 2 naive and recovered coronavirus disease 2019 subjects. Clin Infect Dis. 2022;75(12):2053-2059.doi: 10.1093/cid/ciac378.

52. Kitaura K, Yamashita H, Ayabe H, et al.: Different somatic hypermutation levels among antibody subclasses disclosed by a new Next-Generation Sequencing-Based antibody repertoire analysis. Front Immunol. 2017;8:389. doi: 10.3389/f immu.2017.00389.

53. Kigel A, Vanetik S, Mangel L, et al. Maternal Immunization During the Second Trimester With BNT162b2 mRNA Vaccine Induces a Robust IgA Response in Human Milk: A Prospective Cohort Study. Am J Clin Nutrition. 2023;118(3):572-578. doi:10.1016/j.ajcnut.2023.07.013.

54. WHO COVID-19 dasboard- WHO data. Coronavirus disease statistics.
https://data.who.int/dashboards/covid19/cases Europe, UK and Mediterranean Regions sample 8 Dec 2021 Daily change in new case infections (PCR diagnostic) for country of Israel.

55. Livanos AE, Jha D, Cossarini F, et al. Intestinal host response to SARS-CoV-2 infection and COVID-19 outcomes in patients with gastrointestinal symptoms. Gastroenterol. 2021;160:2435–350. doi: 10.1053/j.gastro.2021.02.056

56. Steele EJ, Chaicumpa W, Rowley D. Isolation and biological properties of three classes of rabbit antibody to Vibrio cholerae. J Infect Dis. 1974;130 (2):93-103. doi: 10.1093/infdis/130.2.93.

57. Torow N, Hand TW, Hornef MW.: Programmed and environmental determinants driving neonatal mucosal immune development. Immunity. 56(3): 485-499. doi: 10.1016/j.immuni.2023.02.013.

58. Husby S, Mestecky J, Moldoveanu Z, et al.: Oral tolerance in humans. T cell but not B cell tolerance after antigen feeding. J Immunol. 1994; 152(9):4663-4670. https://pubmed.ncbi.nlm.nih.gov/8157979/.

59. Mestecky J, Russell MW, Elson CO. Perspectives on mucosal vaccines: is mucosal tolerance a barrier? J Immunol. 2007 Nov 1;179(9):5633-8.
https://www.researchgate.net/profile/Michael-Russell-10/publication/5897334_Perspectives_on_Mucosal_Vaccines_Is_Mucosal_Tolerance_a_Barrier/links/09e41509c331b52299000000/Perspectives-on-Mucosal-Vaccines-Is-Mucosal-Tolerance-a-Barrier.pdf.

60. Bakke H, Samdal HH, Holst J, et al.: Oral spray immunization may be an alternative to intranasal vaccine delivery to induce systemic antibodies but not nasal mucosal or cellular immunity. Scand J Immunol 2006;63:223–231.DOI:10.1111/j.1365-3083.2006.01730.x

61. Bullmore E. Inflamed depression. Lancet. 2018;392(10154):1189-90. DOI: 10.1016/S0140-6736(18)32356-0.

62. Rose J. A Report on the US Vaccine Adverse Events Reporting System (VAERS) of the COVID-1 9 messenger ribonucleic acid (mRNA) biologicals. Science, Public Health Policy, and the Law. 2021 May;2:59-80. https://www.howbadismybatch.com/jessicarose.pdf

63. Lindley RA, Steele EJ.: Deaminases and why mice sometimes lie in immuno-oncology pre- clinical trials? Ann Clin Oncol. 2019. Hosting by Science Repository. http://dx.doi.org/10.31487/j.ACO.2019.01.001.

64. Broyles AD, Banerji A, Barmettler S, et al.: Practical guidance for the evaluation and management of drug hypersensitivity: specific drugs. J Allergy Clin Immunol. 2020;8(9S):S16-S116. doi:10.1016/j.jaip.2020.08.006.

65. Batista-Duharte A, Portuondo D, Pérez O, et al.: Systemic immunotoxicity reactions induced by adjuvanted vaccines. Int Immunopharmacol. 2014; 20:170-80. doi:10.1016/j.intimp.2014.02.033.

66. Amos SM, Duong CP, Westwood JA, et al.: Autoimmunity associated with immunotherapy of cancer. Blood. 2011;118:499- 509. doi:10.1182/blood-2011-01-325266.

67. Descotes J, Choquet-Kastylevsky G, Van Ganse E, et al.: Responses of the immune system to injury. Toxicol Pathol. 2000;28(3):479-81. doi:10.1177/01 9262330002800319.

68. Saso A, Kampmann B.: Vaccine responses in newborns. Sem Immunopath. 2017;39(6):627-642. doi:10.1007/s00281-017-0654-9.

69. Mawson A R, Croft AM.: (2020). Multiple vaccinations and the enigma of vaccine injury. Vaccines, 2020; 8(4), 676. https://doi.org/10.3390/vaccines8040676

70. Jablonowski K, Hooker B.: Adverse outcomes are increased with exposure to added combinations of infant vaccines. Int J Vaccine Theor Pract Res. 2024;3(2):1103-11. https://doi.org/10.56098/xfzkf650.

71. Miller NZ.: Vaccines and sudden infant death: An analysis of the VAERS database 1990-2019 and review of the medical literature. Toxicol Rep. 2021; 8:1324-1335.

72. Offit PA, Quarles J, Gerber MA, et al.: Addressing parents' concerns: do multiple vaccines overwhelm or weaken the infant's immune system? Pediatrics. 2002;109(1):124-9. doi: 10.1542/p eds.109.1.124.

73. Nicoli F, Appay V.: Immunological considerations regarding parental concerns on pediatric immunizations. Vaccine. 2017;35(23): 3012-3019. doi: 10.1016/j.vaccine.2017.04.030.

74. Semmes EC, Chen JL, Goswami R, et al.: Understanding early-life adaptive immunity to guide interventions for pediatric health. Front Immunol. 2021;11:595297. doi: 10.3389/fimmu.20 20.595297.

75. Niewiesk S.: Maternal antibodies: Clinical significance, mechanism of interference with immune responses, and possible vaccination strategies. Front Immunol 2014;5:446. DOI:10.3389/fimmu.2014.00 446

76. Zimmermann P, Jones CE.: Factors That Influence Infant Immunity and Vaccine Responses. Pediatr Infect Dis J. 2021;40(5S):S40-S46. doi: 10.10 97/INF.0000000000002773.

77. Prasad V, Martin A. Makary MA. An Evidence-Based Approach to Covid-19 Vaccination. New Engl J Med.Published on May 20, 2025. DOI: 10.1056/NEJMsb2506929

Most read articles by the same author(s)