Active metabolites of stingless bee nest materials used for meliponitherapy: Bibliometrics, impact of biodiversity in conservation, and emerging microbiome
Main Article Content
Abstract
Stingless bees (Hymenoptera: Apidae: Apinae: Meliponini) collect biotic and abiotic resources from nature to be transformed into nest materials with diverse functions such as structural, immune, defense, and nutritional. The 605 species of stingless bees collecting natural resources processed with associated microbiota are a spectacular biodiversity forming pot-honey, pot-pollen, cerumen and propolis valued in meliponitherapy. The bioactive metabolites have botanical, entomological, and microbial origins. Only pot-honey has been regulated since 2014 in Bahia, Brazil and further national standards. Forecasts of climate change affect stingless bee distribution, their productivity, and may influence the diversity of active metabolites in the nest. A sequence of researches serving meliponitherapy illustrated the ancient use of pot-honey eye drops to the latest cerumen components, reducing oxidative stress, and recent synergism with antibiotics to overcome antimicrobial resistance. Besides the chemical composition, the antioxidant and antimicrobial activities are fundamental added values, supporting a medicinal approach for both nutritional and pharmaceutical applications. Increased aliphatic organic acid contents in fermented pot-honey is not a defect, but a microbial biotransformation to preserve their wet honey with active metabolites. Characterizing the microbiome of stingless bees and their nest materials assists in identifying potential active biomolecules of microbial origin. Authenticity and chemical variability were discussed for quality control. Bibliometrics complemented this review for medicinal stingless bees (2004–2023) and stingless bees in climate change (2010–2023). Neotropical biodiversity of stingless bees was evidenced with the 259 stingless bee species richness in Brazil, 95 of them used in meliponiculture. Nest materials of 64 stingless bee taxa in 14 countries were reviewed for their flavonoid and polyphenol contents, and 13 biological activities. Conservation of stingless bees’ biodiversity has been addressed in the face of climate change and the chemical pool represented for meliponitherapy. Active metabolites from the stingless bee nest are not envisaged to be extracted but to be used in their original matrices: pot-honey, pot-pollen, cerumen, or propolis. A synthesis of most active metabolites could be an option for pharmaceutical developments to reproduce a bioactive chemical repertoire of stingless bees in nature, with a role on Sustainable Development Goals SDG2 food security and SDG3 good health and well-being.
Article Details
The Medical Research Archives grants authors the right to publish and reproduce the unrevised contribution in whole or in part at any time and in any form for any scholarly non-commercial purpose with the condition that all publications of the contribution include a full citation to the journal as published by the Medical Research Archives.
References
2. ADAB. (2014). Agência de Defesa Agropecuária da Bahia. Portaria ADAB nº 207 de 21/11/2014. Regulamento Técnico de Identidade e Qualidade do Mel de Abelha Social sem Ferrão, do Gênero Melipona. Bahia, Brazil, pp. 1–4.
3. Kim, D-H, Sexton, JO, Townshend JR. (2015). Accelerated deforestation in the humid tropics from the 1990s to the 2000s. Geophysical Research Letters 42, 3495–3501. https://doi.org/10.1002/2014GL062777
4. Matricardi EAT, Skole DL, Costa OB, Pedlowski MA, Samek JH, Miguel EP. (2020). Long-term forest degradation surpasses deforestation in the Brazilian Amazon. Science 369, 1378–1382. https://doi.org/10.1126/science.abb3021
5. Silva Jr, CHL, Pessôa ACM, Carvalho NS, Reis JBC, Anderson LO, Aragão LEOC. (2021). The Brazilian Amazon deforestation rate in 2020 is the greatest of the decade. Nature Ecology & Evolution 5, 144–145. https://doi.org/10.1038/s41559-020-01368-x
6. Rocha-Santos L, Mayfield MM, Lopes AV, Pessoa MS, Talora DC, Faria D, Cazetta E. (2020). The loss of functional diversity: A detrimental influence of landscape-scale deforestation on tree reproductive traits. Journal of Ecology 108, 212–223. https://doi.org/10.1111/1365-2745.13232
7. Toledo-Hernández E, Peña-Chora G, Hernández-Velázquez VM, Toribio-Jiménez J, Romero-Ramírez Y. (2022). The stingless bees (Hymenoptera: Apidae: Meliponini): a review of the current threats to their survival. Apidologie 53, 8. https://doi.org/10.1007/s13592-022-00913-w
8. Engel MS, Rasmussen C, Ayala R, de Oliveira FF. (2023) Stingless bee classification and biology (Hymenoptera, Apidae): a review, with an updated key to genera and subgenera. Zookeys 1172, 239–319. https://zookeys.pensoft.net/article/104944/list/1/
9. Vit P, Medina M, Enriquez ME. (2004). Quality standards for medicinal uses of Meliponinae honey in Guatemala, Mexico and Venezuela. Bee World 85, 2–5. https://doi.org/10.1080/0005772X.2004.11099603
10. Pérez-Pérez E, Rodríguez-Malaver J, Vit P. (2007). Efecto de la fermentación en la capacidad antioxidante de miel de Tetragonisca angustula Latreille, 1811. BioTecnología 10, 14–22.
11. Echeverrigaray S, Scariot FJ, Foresti L, Schwarz LV, Rocha RKM, da Silva GP, Moreira JP, Delamare APL. (2021). Yeast biodiversity in honey produced by stingless bees raised in the highlands of southern Brazil. International Journal of Food Microbiology 347, 109200. https://doi.org/10.1016/j.ijfoodmicro.2021.109200
12. Vit P, van der Meulen J, Pedro SRM, Esperanca I, Zakaria R, Beckh G, Maza F, Meccia G, Engel MS. (2023). Impact of genus (Geotrigona, Melipona, Scaptotrigona) in the 1H-NMR organic profile, and authenticity test by interphase emulsion of honey processed in cerumen pots by stingless bees in Ecuador. Current Research in Food Science 6. https://doi.org/10.1016/j.crfs.2022.11.005
13. Betta E, Vit P, Meccia G, Pedro SRM, Romano A, Khomenko I, Biasioli F. (2024). Volatile and sensory profile of cerumen, plant resin deposit, and propolis in a nest of Tetragonisca angustula (Latreille, 1811) from Merida, Venezuela. pp. 149–179. In: Vit P, Bankova V, Popova M, Roubik DW (Eds.). Stingless Bee Nest Cerumen and Propolis. Springer Nature; Cham, Switzerland. Volume 2,501 pp.
14. Vit P. (2024). Metabolites from microbial cell factories in stingless bee nests. pp. 53–114. In: Vit P, Bankova V, Popova M, Roubik DW (Eds.). Stingless Bee Nest Cerumen and Propolis. Springer Nature; Cham, Switzerland. Volume 2,501 pp.
15. Vit P. (2022). A honey authenticity test by interphase emulsion reveals biosurfactant activity and biotechnology in the stingless bee nest of Scaptotrigona vitorum 'Catiana' from Ecuador. Interciencia 47,416-425. https://www.interciencia.net/volumen-47-2022/volumen-47-numero-10/
16. Salomon V, Brodkiewicz I, Gennari G, Maldonado L, Romero CM, Vera NR. (2022). Argentine stingless bee honey: bioactive compounds and health-promoting properties. Natural Resources for Human Health 2. https://doi.org/10.53365/nrfhh/144727
17. Mejia C, Wu M, Zhang Y, Kajikawa Y. (2021). Exploring topics in bibliometric research through citation networks and semantic analysis. Frontiers in Research Metrics and Analytics 6,742311. https://doi.org/10.3389/frma.2021.742311
18. Aria M, Cuccurullo C. (2017). Bibliometrix: An R-tool for comprehensive science mapping analysis. analysis. Journal of Informetrics 11, 959–975. https://doi.org/10.1016/j.joi.2017.08.007
19. Persano-Oddo L, Heard TA, Rodríguez-Malaver A, Pérez RA, Fernández-Muiño M, Sancho M.T., Sesta G., Lusco L., Vit P. (2008). Composition and antioxidant activity of Trigona carbonaria honey from Australia. Journal of Medicinal Food 11, 789–794. https://doi.org/10.1089/jmf.2007.0724
20. Persano-Oddo L, Piro R. (2004). Main European unifloral honeys: Descriptive sheets. Apidologie 35(Suppl. 1), S38-S81. https://doi.org/10.1051/apido:2004049
21. Alves RRN, Oliveira MGG, Barboza RRD, Singh R, Lopez LCS. (2009). Medicinal animals as therapeutic alternative in a semi-arid region of Northeastern Brazil. Forschende Komplementarmedizin 16, 305–312. https://doi.org/10.1159/000235855
22. Sgariglia MA, Vattuone MA, Vattuone MMS, Soberón JR, Sampietro DA. (2010). Properties of honey from Tetragonisca angustula fiebrigi and Plebeia wittmanni of Argentina [Propriétés du miel produit par Tetragonisca angustula fiebrigi et Plebeia wittmanni en Argentine] [Die Eigenschaften von argentinischen Tetragonisca angustula fiebrigi- und Plebeia wittmanni-Honigen]. Apidologie 41, 667–675. https://doi.org/10.1051/apido/2010028
23. Boorn KL, Khor Y-Y, Sweetman E, Tan F, Heard TA, Hammer KA. (2010). Antimicrobial activity of honey from the stingless bee Trigona carbonaria determined by agar diffusion, agar dilution, broth microdilutin and time-kill methodology. Journal of Applied Microbiology 108: 1534–1543. https://doi.org/10.1111/j.1365-2672.2009.04552.x
24. Massaro FC, Brooks PR, Wallace HM, Russell FD. (2011). Cerumen of Australian stingless bees (Tetragonula carbonaria): gas chromatography-mass spectrometry fingerprints and potential anti-inflammatory properties. Naturwissenschaften 98, 329–337. https://doi.org/10.1007/s00114-011-0770-7
25. Vit P, Pedro SRM, Roubik D (Eds.) (2013). Pot-Honey: A Legacy of Stingless Bees. New York, USA: Springer. 654 pp.
26. Vit P, Pedro SRM, Roubik DW (Eds.). (2018). Pot-Pollen in Stingless Bee Melittology. Cham, Switzerland; Springer. 481 pp.
27. Batalha-Filho H, Waldschmidt AM, Campos LAO, Tavares MG, Fernandes-Salomão TM. (2010). Phylogeography and historical demography of the neotropical stingless bee Melipona quadrifasciata (Hymenoptera, Apidae): Incongruence between morphology and mitochondrial DNA. Apidologie 41, 534–547. https://doi.org/10.1051/apido/2010001
28. Giannini TC, Tambosi LR, Acosta AL, Jaffé R, Saraiva AM, Imperatriz-Fonseca VL, Metzger JP. (2015). Safeguarding ecosystem services: A methodological framework to buffer the joint effect of habitat configuration and climate change. PLoS ONE 10, e0129225. https://doi.org/10.1371/journal.pone.0129225
29. Halcroft MT. (2013). Investigations into the biology, behaviour and phylogeny of a potential crop pollinator: the Australian stingless bee, Austroplebeia australis. School of Health and Science. PhD thesis. University of Western Sydney; Sydney, Australia. 388 pp. https://www.beesbusiness.com.au/articles/Investigations%20into%20the%20biology,%20behaviour%20and%20phylogeny%20of%20a%20potential%20crop%20pollinator,%20the%20Australian%20stingless%20bee%20Austroplebeia%20australis.pdf
30. Nacko S, Hall MA, Gloag R, Lynch KE, Spooner-Hart RN, Cook JM, Riegler M. (2023). Heat stress survival and thermal tolerance of Australian stingless bees. Journal of Thermal Biology 117, 103671. https://doi.org/10.1016/j.jtherbio.2023.103671
31. Nogueira DS. (2023). Overview of stingless bees in Brazil (Hymenoptera:Apidae: Meliponini). EntomoBrasilis 16, e1041. https://doi.org/10.12741/ebrasilis.v16.e1030
32. Kiprono SJ, Mengich G, Kosgei J, Mutai C, Kimoloi S. (2022). Ethnomedicinal uses of stingless bee honey among native communities of Baringo County, Kenya. Scientific African 17, e01297. https://doi.org/10.1016/j.sciaf.2022.e01297
33. A.B.E.L.H.A. Asociación Brasileira de Estudos das Abelhas. Fichas catalográficas das espécies relevantes para a meliponicultura. n/d; https://abelha.org.br/fichas-catalograficas-das-especies-relevantes-para-a-meliponicultura-2/
34. Jaffé R. (2018). Influência do transporte de colmeias sobre a estrutura genética das populações de abelhas. pp. 39-47. In: Vollet Neto A, Menezes C (Orgs) Desafios e recomendações para o manejo e o transporte de polinizadores. Associação Brasileira de Estudos das Abelhas (A.B.E.L.H.A); São Paulo, Brazil. 100 pp.
35. Levin DA, Francisco-Ortega J, Jansen RK. (2002). Hybridization and the extinction of rare plant species. Conservation Biology 10, 10–16. http://www.jstor.org/stable/2386938
36. Resende HC, Campos LAO. (2023). Novo registro de hibridização entre as abelhas Melipona capixaba Moure & Camargo, 1994 e Melipona scutellaris Latreille, 1811. pp. 245–254. In: Resende HC, Werneck HA (Orgs.) Estudo sobre abelhas e vespas brasileiras: uma homenagem ao professor Lucio Campos. Florestal, MG: Laboratório de Genética da Conservação de Abelhas. Universidade Federal de Viçosa. 260 pp.
37. Levin DA. (2002). Hybridization and Extinction: In protecting rare species, conservationists should consider the dangers of interbreeding, which compound the more well-known threats to wildlife. American Scientist 90, 254–261. https://www.jstor.org/stable/27857661
38. Buchori D, Rizali A, Priawandiputra W, Raffiudin R, Sartiami D, Pujiastuti Y, Jauharlina J, Pradana MG, Meilin A, Leatemia JA, Sudiarta IP, Rustam R, Nelly N, Lestari P, Syahputra E, Hasriyanti H, Watung JF, Daud IDA, Hariani N, Jihadi A, Johannis M. (2022). Beekeeping and managed bee diversity in Indonesia: Perspective and preference of beekeepers. Diversity 14. 52. https://doi.org/10.3390/d14010052
39. Bueno FGB, Kendall L, Alves DA, Tamara ML, Heard T, Latty T, Gloag R. (2023). Stingless bee floral visitation in the global tropics and subtropics. Global Ecology and Conservation 43, e02454. https://doi.org/10.1101/2021.04.26.440550
40. Grüter C. (2020). Stingless bees. Their behaviour, ecology and evolution. Series: Fascinating Life Sciences. Cham, Switzerland: Springer Nature; Cham, Switzerland. 385 pp. https://doi.org/10.1007/978-3-030-60090-7
41. Vit P. (2001). Stingless bee honey and the treatment of cataracts. pp. 37–40. In: Munn P, Jones R. Honey and Healing. International Bee Research Association; Cardiff, UK. 49 pp.
42. Vit P. (2005). Melissopalynology Venezuela. APIBA-CDCHT, Universidad de Los Andes; Mérida, Venezuela. 205 pp.
43. Punt W, Hoen PP, Blackmore, et al. (2007) Glossary of pollen and spore terminology. Review of Palaeobotany and Palynology 143, 1–81. https://doi.org/10.1016/j.revpalbo.2006.06.008
44. Tropicos.org (2022) Missouri Botanical Garden. https://www.tropicos.org
45. Vit P, Wang Z, Massaro CF, Ekundayo TC. (2024). Global trends on plant resin use by stingless bees (1985-2022) and Apis mellifera (1967-2022) research: A bibliometric analysis. pp. 45–74. In: Vit P, Bankova V, Popova M, Roubik DW (Eds.), Stingless Bee Nest Cerumen and Propolis. Springer Nature; Cham, Switzerland. Volume 1, 535 pp.
46. Shanahan M, Spivak M. (2021). Resin use by stingless bees: a review. Insects 12, 719. https://doi.org/10.3390/insects12080719
47. Newis R, Nichols J, Farrar MB, Bai SH, Wilson RS, Wallace HM. (2023). Stingless bee (Tetragonula carbonaria) foragers prioritise resin and reduce pollen foraging after hive splitting. Apidologie 54. https://doi.org/10.1007/s13592-023-01018-8
48. Moreno E, Vit P, Aguilar, I, Barth OM. (2023). Melissopalynology of Coffea arabica honey produced by the stingless bee Tetragonisca angustula (Latreille, 1811) from Alajuela, Costa Rica. AIMS Agriculture and Food 8, 799-824. https://doi.org/10.3934/agrfood.2020.4.799
49. Louveaux J, Maurizio A, Vorwohl G. (1978). Methods of mellissopalynology. Bee World 9, 139–157. https://doi.org/10.1080/0005772X.1970.11097312
50. Layek U, Das N, Kumar De S, Karmakar P. (2023). The botanical origin of cerumen and propolis of Indian stingless bees (Tetragonula iridipennis Smith): pollen spectrum does not accurately indicate latex and resin sources. Apidologie 54. https://doi.org/10.1007/s13592-023-00994-1
51. Popova M, Gerginova D, Trusheva B, Simova S, Tamfu AN, Ceylan O, Clark K, Bankova V. (2021). A preliminary study of chemical profiles of honey, cerumen, and propolis of the African stingless bee Meliponula ferruginea. Foods 10, 997. https://doi.org/10.3390/foods10050997
52. Tomás-Barberán FA, García-Viguera C, Vit-Olivier P, Ferreres F, Tomás-Lorente F. (1993) Phytochemical evidence for the botanical origin of tropical propolis from Venezuela. Phytochemistry 34, 191–196. https://doi.org/10.1016/S0031-9422(00)90804-5
53. Ferreira IC, Côrrea RC, Orué SL, Leite DF, da Rocha PD, Cardoso CA, Mussury RM, Vit P, de Picoli Souza K, dos Santos EL, Campos JF. (2023). Chemical components and antioxidant activity of Geotrigona sp. and Tetragonisca fiebrigi stingless bee cerumen reduce juglone-induced oxidative Stress in Caenorhabditis elegans. Antioxidants 12, 1276. https://doi.org/10.3390/antiox12061276
54. Othman ZA, Wan Ghazali WS, Noordin L, Mohd. Yusof NA, Mohamed M. (2019). Phenolic compounds and the anti-atherogenic effect of bee bread in high-fat diet-induced obese rats. Antioxidants 9, 33. https://doi.org/10.3390/antiox9010033
55. Zakaria Z, Othman ZA, Suleiman JB, Mustaffa KM, Jalil NA, Ghazali WS, Zulkipli NN, Mohamed M, Kamaruzaman KA. (2022). Therapeutic effects of Heterotrigona itama (stingless bee) bee bread in improving hepatic lipid metabolism through the activation of the Keap1/Nrf2 signaling pathway in an obese rat model. Antioxidants 11, 2190. https://doi.org/10.3390/antiox11112190
56. Choudhari MK, Haghniaz R, Rajwade JM, Paknikar KM. (2013). Anticancer activity of Indian stingless bee propolis: an in vitro study. Evidence-Based Complementary and Alternative Medicine 2013. https://doi.org/10.1155/2013/928280
57. Mahmood R, Asif JA, Shahidan WN. (2020). Stingless-bee (Trigona itama) honey adversely impacts the growth of oral squamous cell carcinoma cell lines (HSC-2). European Journal of Integrative Medicine 37, 101162. https://doi.org/10.1016/j.eujim.2020.101162
58. Vit P. (2002). Effect of stingless bee honey in selenite induced cataracts. Apiacta 3, 1–2.
59. Vongsak B, Kongkiatpaiboon S, Jaisamut S, Machana S, Pattarapanich C. (2015). In vitro alpha glucosidase inhibition and free-radical scavenging activity of propolis from Thai stingless bees in mangosteen orchard. Revista Brasileira de Farmacognosia 25, 445–450. https://doi.org/10.1016/j.bjp.2015.07.004
60. Cheng Z, Shafiq MZ, Zawawi N, Der Ooi J, Chan KW, Ismail N, Ishak NA, Esa NM. (2023). In vitro Investigation of antioxidant and antidiabetic properties of phenolic-rich extract from stingless bee honey (Heterotrigona itama). Malaysian Journal of Medicine & Health Sciences 19. https://www.doi.org/10.47836/mjmhs.19.6.19
61. Farida S, Pratami DK, Sahlan M, Mun'im A, Djamil R, Winarti W, Ayub R, Alahmadi TA, Rahmawati SI, Putra MY, Bayu A. 2023. In vitro study on antidiabetic and antihypertensive activities of ethanolic extract of propolis of Indonesian stingless bee Tetragonula sapiens. Journal of King Saud University-Science 5, 102738. https://doi.org/10.1016/j.jksus.2023.102738
62. Arung ET, Kusuma IW, Paramita S, Amen Y, Kim YU, Naibaho NM, Ramadhan R, Ariyanta HA, Fatriasari W, Shimizu K. (2023). Antioxidant, anti-inflammatory and anti-acne activities of stingless bee (Tetragonula biroi) propolis. Fitoterapia 164, 105375. https://doi.org/10.1016/j.fitote.2022.105375
63. Naibaho NM, Fatriasari W, Kusuma IW, Arung ET. (2023). Phytochemical screening, antioxidant and anti-inflammatory properties of several stingless bee pollens processed using different drying methods. Uludağ Arıcılık Dergisi 23, 153–166. https://doi.org/10.31467/uluaricilik.1286430
64. da Silva IA, da Silva TM, Camara CA, Queiroz N, Magnani M, de Novais JS, Soledade LE, de Oliveira Lima E, de Souza AL, de Souza AG. (2013). Phenolic profile, antioxidant activity and palynological analysis of stingless bee honey from Amazonas, Northern Brazil. Food Chemistry 141, 3552–3558. https://doi.org/10.1016/j.foodchem.2013.06.072
65. Mduda CA, Muruke MH, Hussein JM. (2023). Antimicrobial properties of honeys produced by stingless bees (Hymenoptera, Apidae, Meliponini) from different vegetation zones of Tanzania. International Journal of Tropical Insect Science 43, 1563–1581. https://doi.org/10.1007/s42690-023-01070-y
66. Silva TM, De Souza SA, Dias TL, Silva TM, Falcão RA, Moreira MS, Silva EM, Camara CA. (2014). Chemical composition, antinociceptive and free radical-scavenging activities of geopropolis from Melipona subnitida Ducke (Hymenoptera: Apidae: Meliponini). Sociobiology 61, 560–565. https://doi.org/10.13102/sociobiology.v61i4.560-565
67. Vit P, Yu JQ, Huq F. (2013). Use of honey in cancer prevention and therapy. 481–493 pp. In: Vit P, Pedro SRM, Roubik D (Eds.), Pot-honey: A legacy of stingless bees. Springer; New York, USA. 654 pp.
68. Ismail WI, Hussin NN, Mazlan SN, Hussin NH, Radzi MN (2018). Physicochemical analysis, antioxidant and anti proliferation activities of honey, propolis and beebread harvested from stingless bee. In IOP Conference Series: Materials Science and Engineering 440, 012048. https://www.doi.org/10.1088/1757-899X/440/1/012048
69. Silva TM, Camara CA, da Silva Lins AC, Barbosa-Filho JM, da Silva EM, Freitas BM, dos Santos FD. (2006). Chemical composition and free radical scavenging activity of pollen loads from stingless bee Melipona subnitida Ducke. Journal of Food Composition and Analysis 19, 507–511. https://doi.org/10.1016/j.jfca.2005.12.011
70. Mduda CA, Muruke MH, Hussein JM. (2023). Antimicrobial properties of honeys produced by stingless bees (Hymenoptera, Apidae, Meliponini) from different vegetation zones of Tanzania. International Journal of Tropical Insect Science 43, 1563–1581. https://doi.org/10.1007/s42690-023-01070-y
71. Omar WA, Azhar NA, Fadzilah NH, Kamal NN. (2016). Bee pollen extract of Malaysian stingless bee enhances the effect of cisplatin on breast cancer cell lines. Asian Pacific Journal of Tropical Biomedicine 6, 265–269. https://doi.org/10.1016/j.apjtb.2015.12.011
72. Yazan LS, Zali MFSM, Ali RM, Zainal NA, Esa N, Sapuan S, Ong YS, Tor YS, Gopalsamy B, Ling Voon FL, Alwi SSS. (2016). Chemopreventive properties and toxicity of kelulut honey in Sprague Dawley rats induced with azoxymethane. BioMed Research International 4036926. http://dx.doi.org/10.1155/2016/4036926
73. Rebelo KS, Cazarin CB, Iglesias AH, Stahl MA, Kristiansen K, Carvalho‐Zilse GA, Grimaldi R, Reyes FG, Danneskiold‐Samsøe NB, Junior MR. (2021), Nutritional composition and bioactive compounds of Melipona seminigra pot‐pollen from Amazonas, Brazil. Journal of the Science of Food and Agriculture 101, 4907–4915. https://doi.org/10.1002/jsfa.11134
74. Zulkhairi Amin FA, Sabri S, Ismail M, Chan KW, Ismail N, Mohd Esa N, Mohd Lila MA, Zawawi N. (2020). Probiotic properties of Bacillus strains isolated from stingless bee (Heterotrigona itama) honey collected across Malaysia. International Journal of Environmental Research and Public Health 17, 278. https://doi.org/10.3390/ijerph17010278
75. Melia S, Aritonang SN, Juliyarsi I, Kurnia YF, Rusdimansyah R, Hernita VO. (2022). The screening of probiotic lactic acid bacteria from honey of stingless bee from West Sumatra, Indonesia and using as starter culture. Biodiversitas Journal of Biological Diversity 23. https://doi.org/10.13057/biodiv/d231235
76. Vit P, Jacob TJ. (2008). Putative anticataract properties of honey studied by the action of flavonoids on a lens culture model. Journal of Health Science 54, 196–202. https://doi.org/10.1248/jhs.54.196
77. Codex Stan. Standard for Honey. (1987). CXS 12-1981 Adopted in 1981. Revised in 1987, 2001. Amended in 2019. Codex Alimentarius. FAO. WHO. International Food Standards. 1981; pp. 1–8 (World-wide standard) Rev. 1. https://www.fao.org/3/w0076e/w0076e30.htm Five languages https://www.fao.org/fao-who-codexalimentarius/
78. Zawawi N, Zhang J, Hungerford NL, Yates HAS, Webber DC, Farrell M, Tinggi U, Bhandari B, Fletcher MT. (2022). Unique physicochemical properties and rare reducing sugar trehalulose mandate new international regulation for stingless bee honey. Food Chemistry 373, 131566. https://doi.org/10.1016/j.foodchem.2021.131566
79. Popova M, Trusheva B, Bankova V. (2021). Propolis of stingless bees: A phytochemist's guide through the jungle of tropical biodiversity. Phytomedicine 86, 153098. https://doi.org/10.1016/j.phymed.2019.153098
80. Asem N, Abdul Gapar NA, Abd Hapit NH, Omar EA. (2020). Correlation between total phenolic and flavonoid contents (measured by spectrophotometric methods) with antioxidant activity of Malaysian stingless bee propolis extract. Journal of Apicultural Research 5, 437–442. https://doi.org/10.1080/00218839.2019.1684050
81. Mohamed WAS, Ismail NZ, Muhamad M, Omar EA, Samad NA, Ooi JP, Mohamad S. Q-TOF LC-MS compounds evaluation of propolis extract derived from Malaysian stingless bees, Tetrigona apicalis, and their bioactivities in breast cancer cell, MCF7. Saudi Journal of Biological Sciences 2022; 29: 103403.
82. Syed Salleh SNA, Mohd Hanapiah NA, Ahmad H, Wan Johari WL, Osman NH, Mamat MR. Determination of total phenolics, flavonoids, and antioxidant activity and GC-MS analysis of Malaysian stingless bee propolis water extracts. Scientifica 2021, 3789351. https://doi.org/10.1155/2021/3789351
83. Gonnet M, Lavie P, Nogueira-Neto P. Étude de quelques characteristiques des miels récoltés para certains Méliponines brésiliens. Comptes Rendus de l'Académie des Sciences Paris 1964; 258: 3107–3109. https://doi.org/10.1111/j.1096-3642.1955.tb00591.x
84. ADAF. Agência de Defesa Agropecuária e Florestal do Estado do Amazonas. Portaria ADAF n◦ 253 de 31 de outubro de 2016. Regulamento Técnico de Identidade e Qualidade do Mel de Abelha Social Sem Ferrão para o Estado do Amazonas. Brazil. 2016; 1–9.
85. ADAPAR. Agência de Defesa Agropecuária do Paraná. Portaria N◦ 63, de 10 de março de 2017. Regulamento Técnico de Identidade e Qualidade do Mel de Abelhas Sem Ferrão para o Estado do Paraná, Brazil. 2017; 1–9 pp.
86. IDAF. Instituto de Defesa Agropecuária e Florestal do Espírito Santo. Instrução Normativa n◦ 001, de 17 de abril de 2019. Regulamento Técnico de Identidade e Qualidade do Mel de Abelhas Sem Ferrão para o Estado do Espírito Santo, Brazil. 2019; 1–7.
87. SAR. Secretaria de Estado da Agricultura e da Pesca e do Desenvolvimento Rural. Portaria SAR n◦ 37/2020, de 04/11/2020. Decreto Estadual n° 39. 2020. Norma Interna Regulamentadora do Mel de Abelhas Sem Ferrão no Estado de Santa Catarina, Brazil. 2020; 16–24.
88. Philippine National Standard PNS/BAFS 185:2016 ICS. Bureau of Agriculture and Fisheries Standards. Honey. Department of Agriculture; Quezon City, Philippines. 2016; 10 pp.
89. Department of Standards Malaysia. Kelulut (Stingless bee) honey – Specification MS 2683: 2017. Available at https://es.scribd.com/docu-ment/398215369/Kelulut-Stingless-bee-honey-Specification
90. Secretaría de Regulación y Gestión Sanitaria y Secretaría de Alimentos y Bioeconomía. Miel de Tetragonisca fiebrigi (yateí). Resolución Conjunta 17/2019 RESFC-2019- 17-APN-SRYGS#MSYDS 02/05/2019 N 29258/19 v. 02/05/2019. 2019; 1–8.
91. Vit P, Aguilar I, Chuttong B, Barth OM, Cervancia C, Locsin A, Baroga-Barbecho J, Rebelo KS, Vossler F, Thanh LN, Karmakar P, Layek U, Meccia G, Guevara P, Maza F, Rasmussen C, Kimoloi1 S, Halcroft M, Yurrita Obiols CL, Loayza S, Infante J, Pérez A, Nicolas A, Azmi WA, Marcucci MC, Nogueira DS, Ortiz-Vázquez E, Mduda C, Wang Z, Ramírez-Arriaga E, Bankova V. Nutraceutical and health benefits of meliponine honey, pollen, cerumen, and propolis. Female stingless bee keeping and pharmaceutical developments. Current Research in Insect Science (submitted). 2024b.
92. Vit P, Gutiérrez MG, Titěra D, Bednář M, Rodríguez-Malaver AJ. Mieles checas categorizadas según su actividad antioxidante. Acta Bioquímica Clínica Latinoamericana 2008; 42: 237–244.
93. Fletcher M, Hungerford NL, Webber D, de Jesus MC, Zhang J, Stone ISJ, Zawawi N. Stingless bee honey, a novel source of trehalulose: a biologically active disaccharide with health benefits. Scientific Reports 2020; 10, 12128. https://doi.org/10.1038/s41598-020-68940-0
94. Vit P. Curso Calidad de la Colmena para la Apiterapia. VII Congreso Nacional de Ciencias Farmacéuticas. Facultad de Farmacia y Bioanálisis, Universidad de Los Andes Mérida, Venezuela. 2000 https://www.apiservices.biz/es/articulos/ordenar-por-popularidad/966-curso-calidad-colmena-para-apiterapia
95. Vit P. Diversity of active metabolites in stingless bee nest materials, a path for rational discoveries in apitherapy. Symposium “Value added products from Beekeeping”, September 7th, APIMONDIA 48th International Apicultural Congress, Santiago de Chile, Chile. September 4th to 8th 2023. https://apiculture.com/en/?preview=1&option=com_dropfiles&format=&task=frontfile.download&catid=29&id=1186&Itemid=1000000000000
96. Vit P, Simova S. (2023). The Review on Aliphatic Organic Acids (AOA) of Honey and Pot-honey for Bee Science. E-book. APIBA, CDCHTA-ULA, Universidad de Los Andes, Mérida, Venezuela. 70 pp. http://www.saber.ula.ve/bitstream/handle/123456789/49623/review_AOA_Vit_Simova.pdf?sequence=4&isAllowed=y
97. WHO. (2022). WHO Global antimicrobial resistance and use surveillance system (GLASS) report 2022. World Health Organization; Geneva, Switzerland. 71 pp. https://www.who.int/publications/i/item/9789240062702
98. Antimicrobial Resistance Collaborators. (2022). Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet 399(10325), 629-655. https://doi.org/10.1016/S0140-6736(21)02724-0
99. Salam MA, Al-Amin MY, Salam MT, Pawar JS, Akhter N, Rabaan AA, Alqumber MAA. (2023). Antimicrobial resistance: A growing serious threat for global public health. Healthcare 11, 1946. https://doi.org/10.3390/healthcare11131946
100. WHO. (2024). WHO Bacterial Priority Pathogens List, 2024: bacterial pathogens of public health importance to guide research, development and strategies to prevent and control antimicrobial resistance. Geneva: World Health Organization; 56 pp. https://www.who.int/publications/i/item/9789240093461
101. Mancuso G, Midiri A, Gerace E, Biondo C. (2021). Bacterial Antibiotic resistance: the most critical pathogens. Pathogens 10, 1310. https://doi.org/10.3390/pathogens10101310
102. Szweda P. (2021). Editorial for the Special Issue: “Honey bee Products as an Alternative or Complement to Classical Antibiotics”. Antibiotics (Basel) 10, 234. https://doi.org/10.3390/antibiotics10030234
103. Ratajczak M, Kaminska D, Matuszewska E, Hołderna-Kedzia E, Rogacki J, Matysiak J. (2024). Promising antimicrobial properties of bioactive compounds from different honeybee products. Molecules 26, 4007. https://doi.org/10.3390/molecules26134007
104. Vit P, Araque M, Chuttong B. (2024). A multifaceted bioactive resource of stingless bees: Unlocking the therapeutic anti-antimicrobial-resistance (anti-AMR) potential of pot-pollen. Medical Research Archives 12 (10). https://doi.org/10.18103/mra.v12i10.5864
105. Vit P, Ricciardelli D’Albore G, Barth OM, Peña-Vera M, Pérez-Pérez E. (2018). Characterization of pot-pollen from Southern Venezuela. pp. 361–375. In P Vit, SRM Pedro, DW Roubik (editors), Pot-pollen in Stingless Bee Melittology. Springer Nature; Cham, Switzerland; 481 pp. https://doi.org/10.1007/978-3-319-61839-5_26
106. Sulbarán-Mora M, Peña-Vera M, Pérez-Pérez E, Vit P. (2018). Antibacterial activity of ethanolic extracts of pot-pollen from eight meliponine species from Venezuela. pp. 391– 399. In P Vit, SRM Pedro, DW Roubik (editors), Pot-pollen in Stingless Bee Melittology. Springer Nature; Cham, Switzerland; 481 pp. https://doi.org/10.1007/978-3-319-61839-5_28
107. Ogwu, MC, Izah, SC. (2025). Honey as a natural antimicrobial. Antibiotics 14, 255. https://doi.org/10.3390/antibiotics1403025
108. Bava R, Puteo C, Lombardi R, Garcea G, Lupia C, Spano A, Liguori G, Palma E, Britti D, Castagna F. (2025). Antimicrobial properties of hive products and their potential applications in human and veterinary medicine. Antibiotics 14, 172. https://doi.org/10.3390/antibiotics14020172
109. Araque M, Vit P. (2024). Evaluation of the potential synergistic effect of pot-pollen with amikacin and meropenem against extensively drug-resistant bacteria of clinical origin. Medical Research Archives 12 (9). https://doi.org/10.18103/mra.v12i9.5924
110. Vit P, Araque M, Chuttong B, Moreno E, Contreras RR, Wang Q, Wang Z, Betta E, Bankova V. (2024). Pot-Pollen volatiles, bioactivity, synergism with antibiotics, and bibliometrics overview, including direct injection in food flavor. Foods 13, 3879. https://doi.org/10.3390/foods13233879
111. Vit P, Chuttong B, Aguilar I, Barth OM, Cervancia C, Locsin A, Baroga-Barbecho J, Sarmento Rebelo K, Vossler F, Thanh LN, Karmakar P, Layek U, Meccia G, Ramírez-Arriaga E, Maza F, Rasmussen C, Kimoloi S, Halcroft M, Yurrita-Obiols CL, Loayza S, Infante J, Pérez A, Nicolas A, Azmi, WA, Marcucci MC, Silva Nogueira D, Ortiz-Vázquez E, Mduda C, Wang Z, Araque M, Magalhães Freitas B, Bankova BS. (2025). Phytochemicals and nutraceutical potential of stingless bee nest biomaterials: the emerging role of female stingless bee keeping in global food security and pharmaceutical development. Frontiers in Nutrition 12. https://doi.org/10.3389/fnut.2025.1573821
112. Salatino A. (2022). Perspectives for uses of propolis in therapy against infectious diseases. Molecules 27, 4594. https://doi.org/10.3390/molecules27144594
113. Brudzynski, K. (2021). Honey as an ecological reservoir of antibacterial compounds produced by antagonistic microbial interactions in plant nectars, honey and honey bee. Antibiotics 10, 551. https://doi.org/10.3390/antibiotics10050551
114. Vit P, Chuttong B, Ramírez-Arriaga E, Enríquez E, Wang Z, Cervancia C, Vossler F, Kimoloi S, Engel MS, Contreras RR, Mduda CA, Tomás-Barberán F. (2025). Stingless bee honey: Nutraceutical properties and urgent call for proposed global standards. Trends in Food Science & Technology 157, 104844. https://doi.org/10.1016/j.tifs.2024.104844
115. Mduda CA, Vit P, Rikohe IF, Lukiko SB. (2025). Axestotrigona ferruginea pot-pollen from Tanzania: a high-value nutritional supplement with antioxidant potential. Journal of Apicultural Research 1–12. https://doi.org/10.1080/00218839.2025.2559466
116. Ferreira IC, Côrrea RCD, Orué SL, Leite DF, da Rocha PdS, Cardoso CAL, Mussury RM, Vit P, de Picoli Souza K, dos Santos EL, Campos JF. (2023). Chemical components and antioxidant activity of Geotrigona sp. and Tetragonisca fiebrigi stingless bee cerumen reduce juglone-induced oxidative stress in Caenorhabditis elegans. Antioxidants 12, 1276. https://doi.org/10.3390/antiox12061276
117. Chuttong B, Lim K, Praphawilai P, Danmek K, Maitip J, Vit P, Wu M.-C, Ghosh S, Jung C, Burgett M, Hongsibsong S. (2023). Exploring the functional properties of propolis, geopropolis, and cerumen with a special emphasis on their antimicrobial effects. Foods 12, 3909. https://doi.org/10.3390/foods12213909
118. Vit P. (2024). Metabolites from microbial cell factories in stingless bee nests. pp. 53–114 pp. In P Vit, V Bankova, M Popova, DW Roubik (editors), Stingless Bee Nest Cerumen and Propolis. Springer Nature; Cham, Switzerland; Volume 2, 501 pp. https://doi.org/10.1007/978-3-031-43887-5_4
119. Alves VF, Chaul LT, Bueno, GCA, Reinecke I, Silva TCG, Brito PVA, De Martinis ECP. (2024). Associated bacterial microbiota of honey and related products from stingless bees as novel sources of bioactive compounds for biotechnological applications. Current Opinion in Food Sciemce 55, 101122. https://doi.org/10.1016/j.cofs.2023.101122
120. Hammer TJ, Calabria AE, Moran NA. (2023). Microbiome assembly and maintenance across the lifespan of bumble bee workers. Molecular Ecology 32(3), 724-740. https://doi.org/10.1111/mec.16769
121. Tarlinton B, Massaro FC, Hauxwell C. (2023). 16S Amplicon metabarcoding of the nest materials of native Australian stingless bees. Microbioogical Resources Announcement 12, e0118122. https://doi.org/10.1128/mra.01181-22
122. Meireles SD, dos Santos SF, Rafael MS, da Mota AJ, da Silva CGN. (2022). Yeasts from the nests of two Amazonian stingless bees: screening and PCR-RFLP molecular analysis. Symbiosis 87, 153–163. https://doi.org/10.1007/s13199-022-00865-w
123. de Paula GT, Melo WGDP, de Castro I, Menezes C, Paludo CR, Rosa CA, Pupo MT. (2023). Further evidences of an emerging stingless bee-yeast symbiosis. Frontiers in Microbiology 14, 1221724. https://doi.org/10.3389/fmicb.2023.1221724
124. Ramírez-Ahuja MDL, Peña-Carrillo KI, Gómez-Govea MA, Jiménez-Martínez ML, Trujillo-Rodríguez GJ, Espinoza-Ruiz M, Guzmán Velasco A, Flores AE, González-Rojas JI, Reséndez-Pérez D, Rodríguez-Sánchez IP. (2025). Gut Microbiota Diversity in 16 Stingless Bee Species (Hymenoptera: Apidae: Meliponini). Microorganisms 13, 1645. https://doi.org/10.3390/microorganisms13071645
125. Castillo DC, Sinpoo C, Phokasem P, Castillo DC, Yongsawas R, Sansupa C, Attasopa K, Suwannarach N, Inwongwan S, Noirungsee N. Disayathanoowat T. (2024). Distinct fungal microbiomes of two Thai commercial stingless bee species, Lepidotrigona terminata and Tetragonula pagdeni suggest a possible niche separation in a shared habitat. Frontiers in Cellular and Infection Microbiology 14, 1367010. https://doi.org/10.3389/fcimb.2024.1367010
126. Selma MV, Espin JC, Tomas-Barberan FA. (2000). Interaction between phenolics and gut microbiota: role in human health. Journal of Agricultural and Food Chemistry 57, 6485–6501. https://doi.org/10.1021/jf902107d
127. Paludo CR, Menezes C, Silva EA, Vollet-Neto A, Andrade Dominguez A, Pishchany G, Khadempour L, Nascimento FS, Currie CR, Kolter R, Clardy, J., Pupo, M. (2018). Stingless bee larvae require fungal steroid to pupate. Scientific Reports 8, 1122. https://doi.org/10.1038/s41598-018-19583-9
128. Paludo CR, Pishchany G, Andrade-Dominguez A, Silva EA, Menezes C, Nascimento FS, Currie CR, Kolter R, Clardy J, Pupo MT. (2019). Microbial community modulates growth of symbiotic fungus required for stingless bee metamorphosis. PLoS One 14, e0219696. https://doi.org/10.1371/journal.pone.0219696
129. Atanasov AG, Zotchev SB, Dirsch VM, International Natural Product Sciences Taskforce. Supuran CT. (2021). Natural products in drug discovery: Advances and opportunities. Nature Reviews Drug Discovery 20, 200-216. https://doi.org/10.1038/s41573-020-00114-z
130. Hawkins J, de Vere N, Griffith A, Ford CR, Allainguillaume J, Hegarty MJ, Baillie L, Adams-Groom B. (2015) Using DNA metabarcoding to identify the floral composition of honey: A new tool for investigating honey bee foraging preferences. PLoS ONE 10, e0134735. https://doi.org/10.1371/journal.pone.0134735
131. Bovo S, Utzeri VJ, Ribani A, Cabbri R, Fontanesi L. (2020). Shotgun sequencing of honey DNA can describe honey bee derived environmental signatures and the honey bee hologenome complexity. Scientific Reports 10, 9279. https://doi.org/10.1038/s41598-020-66127-1
132. Galanis A, Vardakas P, Reczko M, Harokopos V, Hatzis P, Skoulakis EMC, Pavlopoulos GA, Patalano S. (2022). Bee foraging preferences, microbiota and pathogens revealed by direct shotgun metagenomics of honey. Molecular Ecology Resources 22, 2506–2523. https://doi.org/10.1111/1755-0998.13626
133. Paluoja P, Vaher M, Teder H, Krjutškov K, Salumets A, Raime K. (2025). Honey bulk DNA metagenomic analysis to identify honey biological composition and monitor honey bee pathogens. NPJ Science of Food. 9, 91. https://doi.org/10.1038/s41538-025-00464-1
134. Usyk M, Peters BA, Karthikeyan S, McDonald D, Sollecito CC, Vazquez-Baeza Y, Shaffer JP, Gellman MD, Talavera GA, Daviglus ML, Thyagarajan B, Knight R, Qi Q, Kaplan R, Burk RD. (2023). Comprehensive evaluation of shotgun metagenomics, amplicon sequencing, and harmonization of these platforms for epidemiological studies. Cell Reports Methods 3, 100391. https://doi.org/10.1016/j.crmeth.2022.100391
135. Edwards D, Stajich JE, Hansen D. (2009). DNA Sequence Databases. pp. 1–11. In D Edwards, JE Stajich, D Hansen (editors), Bioinformatics: Tools and Applications, Springer; NYC, United States. 451 pp.
136. Yugueros SI, Peláez J, Stajich JE, Fuertes-Rabanal M, Sánchez-Vallet A, Largo-Gosens A, Mélida H. (2024). Study of fungal cell wall evolution through its monosaccharide composition: An insight into fungal species interacting with plants. The Cell Surface 11, 100127. https://doi.org/10.1016/j.tcsw.2024.100127
137. Truchado P, Vit P, Ferreres F, Tomas-Barberan F. (2011). Liquid chromatography–tandem mass spectrometry analysis allows the simultaneous characterization of C-glycosyl and O-glycosyl flavonoids in stingless bee honeys. Journal of Chromatography A 1218, 7601–7607. https://doi.org/10.1016/j.chroma.2011.07.049
138. Pérez-Pérez EM, Suárez E, Peña-Vera MJ, Vit P. (2013). Antioxidant activity of nest products of Tetragonisca angustula from Mérida, Venezuela. In: Vit P, Roubik DW, editors. Stingless bees process honey and pollen in cerumen pots. Mérida, Venezuela: Facultad de Farmacia y Bioanálisis, Universidad de Los Andes; pp. 1–6. http://www.saber.ula.ve/handle/123456789/35292
139. Pazin WM, LM, Mônaco LM, Soares E, Miguel FG, Berretta A, Ito AS. (2017). Antioxidant activities of three stingless bee propolis and green propolis types. Journal of Apicultural Research 56, 1-6. https://doi.org/10.1080/00218839.2016.1263496
140. de Souza SA, da Silva TM, da Silva EM, Camara CA, Silva TM. (2018). Characterisation of phenolic compounds by UPLC‐QTOF‐MS/MS of geopropolis from the stingless bee Melipona subnitida (jandaíra). Phytochemical Analysis 29, 549–558. https://doi.org/10.1002/pca.2766
141. Tuksitha L, Chen YL, Chen YL, Wong KY, Peng CC. (2018). Antioxidant and antibacterial capacity of stingless bee honey from Borneo (Sarawak). Journal of Asia-Pacific Entomology 21, 563–570. https://doi.org/10.1016/j.aspen.2018.03.007
142. Belina‐Aldemita MD, Schreiner M, D'Amico S. (2020). Characterization of phenolic compounds and antioxidative potential of pot‐pollen produced by stingless bees (Tetragonula biroi Friese) from the Philippines. Journal of Food Biochemistry 44, e13102. https://doi.org/10.1111/jfbc.13102
143. Oliveira RG, Jain S, Freitas LD, Araújo ED. (2019). Phenolic compound, nutritional and antioxidant profile of pollen collected by the genus Melipona in North Eastern Brazil. Brazilian Journal of Food Technology 22. https://doi.org/10.1590/1981-6723.07918
144. Biluca FC, da Silva B, Caon T, Mohr ET, Vieira GN, Gonzaga LV, Vitali L, Micke G, Fett R, Dalmarco EM, Costa AC. (2020). Investigation of phenolic compounds, antioxidant and anti-inflammatory activities in stingless bee honey (Meliponinae). Food Research International 129, 108756. https://doi.org/10.1016/j.foodres.2019.108756
145. Majid M, Ellulu MS, Abu Bakar MF. (2020). Melissopalynological study, phenolic compounds, and antioxidant properties of Heterotrigona itama honey from Johor, Malaysia. Scientifica 2020. https://doi.org/10.1155/2020/2529592
146. Dutra RP, Abreu BV, Cunha MS, Batista MC, Torres LM, Nascimento FR, Ribeiro MN, Guerra RN. (2014). Phenolic acids, hydrolyzable tannins, and antioxidant activity of geopropolis from the stingless bee Melipona fasciculata Smith. Journal of Agricultural and Food Chemistry 62, 2549–2557. https://doi.org/10.1021/jf404875v
147. Iesa NB, Chaipoot S, Phongphisutthinant R, Wiriyacharee P, Lim BG, Sringarm K, Burgett M, Chuttong B. (2023). Effects of maltodextrin and gum arabic composition on the physical and antioxidant activities of dewaxed stingless bee cerumen. Foods 12, 3740. https://doi.org/10.3390/foods12203740
148. Mohd Suib MS, Wan Omar WA, Omar EA, Mohamed R. (2021). Ethanolic extract of propolis from the Malaysian stingless bee Geniotrigona thoracica inhibits formation of THP-1 derived macrophage foam cells. Journal of Apicultural Research 60, 478–490. https://doi.org/10.1080/00218839.2020.1720125
149. Kustiawan PM, Puthong S, Arung ET, Chanchao C. (2014). In vitro cytotoxicity of Indonesian stingless bee products against human cancer cell lines. Asian Pacific Journal of Tropical Biomedicine 4, 549–556. https://doi.org/10.12980/APJTB.4.2014APJTB-2013-0039
150. Nugitrangson P, Puthong S, Iempridee T, Pimtong W, Pornpakakul S, Chanchao C. (2016). In vitro and in vivo characterization of the anticancer activity of Thai stingless bee (Tetragonula laeviceps) cerumen. Experimental Biology and Medicine 241, 166–176. https://doi.org/10.1177/1535370215600102
151. dos Santos HF, Campos JF, Santos CM, Balestieri JB, Silva DB, Carollo CA, de Picoli Souza K, Estevinho LM, dos Santos EL. (2017). Chemical profile and antioxidant, anti-inflammatory, antimutagenic and antimicrobial activities of geopropolis from the stingless bee Melipona orbignyi. International Journal of Molecular Sciences 18, 953. https://doi.org/10.3390/ijms18050953
152. Ahmad F, Seerangan P, Mustafa MZ, Zul Faizuddin Osman ZF, Jafri Malin Abdullah JM, Idris Z. (2019). Anti-cancer properties of Heterotrigona itama sp. honey via induction of apoptosis in malignant glioma cells. Malaysian Journal of Medical Sciences 26, 30–39. https://doi.org/10.21315/mjms2019.26.2.4
153. Desamero MJ, Kakuta S, Tang Y, Chambers JK, Uchida K, Estacio MA, Cervancia C, Kominami Y, Ushio H, Nakayama J, Nakayama H. Tumor-suppressing potential of stingless bee propolis in in vitro and in vivo models of differentiated-type gastric adenocarcinoma. Scientific Reports 9, 19635. https://doi.org/10.1038/s41598-019-55465-4
154. Arung ET, Ramadhan R, Khairunnisa B, Amen Y, Matsumoto M, Nagata M, Kusuma IW, Paramita S, Tandirogang N, Takemoto N, Kim YU. (2021). Cytotoxicity effect of honey, bee pollen, and propolis from seven stingless bees in some cancer cell lines. Saudi Journal of Biological Sciences 28, 7182–7189. https://doi.org/10.1016/j.sjbs.2021.08.017
155. Vit P. (1997). Cataratas y Mieles Terapéuticas. Consejo de Desarrrollo Científico, Humanístico y Tecnológico, Universidad de Los Andes; Mérida, Venezuela. 79 pp.
156. Abdul Aziz MS, Giribabu N, Rao PV, Salleh N. (2017). Pancreatoprotective effects of Geniotrigona thoracica stingless bee honey in streptozotocin-nicotinamide-induced male diabetic rats. Biomedicine & Pharmacotherapy 89, 135–145. https://doi.org/10.1016/j.biopha.2017.02.026
157. Nna VU, Bakar AB, Lazin MR, Mohamed M. (2018). Antioxidant, anti-inflammatory and synergistic anti-hyperglycemic effects of Malaysian propolis and metformin in streptozotocin–induced diabetic rats. Food and Chemical Toxicology 120, 305–320. https://doi.org/10.1016/j.fct.2018.07.028
158. Pujirahayu N, Bhattacharjya DK, Suzuki T, Katayama T. (2019). α-Glucosidase inhibitory activity of cycloartane-type triterpenes isolated from Indonesian stingless bee propolis and their structure–activity relationship. Pharmaceuticals 12, 102. https://doi.org/10.3390/ph12030102
159. Rahmawati O, Pratami DK, Raffiudin R, Sahlan M. (2019). Alpha-glucosidase inhibitory activity of stingless bee honey from Tetragonula biroi and Tetragonula laeviceps. AIP Conference Proceedings 2092. https://doi.org/10.1063/1.5096705
160. Ali H, Abu Bakar MF, Majid M, Muhammad N, Lim SY. (2020). In vitro anti-diabetic activity of stingless bee honey from different botanical origins. Food Research 4, 1421–1426. https://doi.org/10.26656/fr.2017.4(5).411
161. Campos JF, Santos UP, Rocha PD, Damião MJ, Balestieri JB, Cardoso CA, Paredes-Gamero EJ, Estevinho LM, de Picoli Souza K, Santos EL. (2015). Antimicrobial, antioxidant, anti-inflammatory, and cytotoxic activities of propolis from the stingless bee Tetragonisca fiebrigi (Jataí). Evidence-Based Complementary and Alternative Medicine 2015. https://doi.org/10.1155/2015/296186
162. Hamilton KD. (2016). Evaluation of the anti-inflammatory, anti-oxidant and wound-healing potential of cerumen from the Australian native stingless bee, Tetragonula carbonaria. Doctoral dissertation, University of the Sunshine Coast; Sippy Downs QLD, Australia. 213 pp. https://doi.org/10.25907/00591
163. Hamilton KD, Brooks PR, Ogbourne SM, Russell FD. (2017). Natural products isolated from Tetragonula carbonaria cerumen modulate free radical-scavenging and 5-lipoxygenase activities in vitro. BMC Complementary and Alternative Medicine 17, 1–8. https://doi.org/10.1186/s12906-017-1748-6
164. Lopes AJ, Vasconcelos CC, Pereira FA, Silva RH, Queiroz PF, Fernandes CV, Garcia JB, Ramos RM, Rocha CQ, Lima ST. (2019). Cartágenes MD. Anti-inflammatory and antinociceptive activity of pollen extract collected by stingless bee Melipona fasciculata. International Journal of Molecular Sciences 20, 4512. https://doi.org/10.3390/ijms20184512
165. Badrulhisham NS, Ab Hamid SN, Ismail MA, Yong YK, Zakuan NM, Harith HH, Saidi HI, Nurdin A. (2020). Harvested locations influence the total phenolic content, antioxidant levels, cytotoxic, and anti-inflammatory activities of stingless bee honey. Journal of Asia-Pacific Entomology 23, 950–956. https://doi.org/10.1016/j.aspen.2020.07.015
166. Barboza JR, Pereira FA, Fernandes RA, Vasconcelos CC, Cartágenes MD, Oliveira Lopes AJ, Melo AC, Guimarães ID, Rocha CQ, Ribeiro MN. (2020). Cytotoxicity and pro-apoptotic, antioxidant and anti-inflammatory activities of geopropolis produced by the stingless bee Melipona fasciculata Smith. Biology 9, 292. https://doi.org/10.3390/biology9090292
167. Zhang W, Cai Y, Chen X, Ji T, Sun L. Optimized extraction based on the terpenoids of Heterotrigona itama propolis and their antioxidative and anti‐inflammatory activities. Journal of Food Biochemistry 44, e13296. https://doi.org/10.1111/jfbc.13296
168. Ooi TC, Yaacob M, Rajab NF, Shahar S, Sharif R. (2021). The stingless bee honey protects against hydrogen peroxide-induced oxidative damage and lipopolysaccharide-induced inflammation in vitro. Saudi Journal of Biological Sciences 28, 2987–2994. https://doi.org/10.1016/j.sjbs.2021.02.039
169. Hamilton KD, Czajkowski D, Kong NJ, Tran TD, Gustafson KR, Pauly G, Boyle GM, Simmons JL, Steadman R, Moseley R, Brooks PR. (2022). Anti-fibrotic potential of Tomentosenol A, a constituent of cerumen from the Australian native stingless bee Tetragonula carbonaria. Antioxidants 11, 1604. https://doi.org/10.3390/antiox11081604
170. Wu MC, Wu CY, Klaithin K, Tiong KK, Peng CC. (2022). Effect of harvest time span on physicochemical properties, antioxidant, antimicrobial, and anti‐inflammatory activities of Meliponinae honey. Journal of the Science of Food and Agriculture 102, 5750–5758. https://doi.org/10.1002/jsfa.11924
171. Abdullah NA, Zullkiflee N, Zaini SN, Taha H, Hashim F, Usman A. (2020). Phytochemicals, mineral contents, antioxidants, and antimicrobial activities of propolis produced by Brunei stingless bees Geniotrigona thoracica, Heterotrigona itama, and Tetrigona binghami. Saudi Journal of Biological Sciences 27, 2902–2911. https://doi.org/10.1016/j.sjbs.2020.09.014
172. Dallagnol AM, Dallagnol VC, Vignolo GM, Lopes NP, Brunetti AE. (2022). Flavonoids and phenylethylamides are pivotal factors affecting the antimicrobial properties of stingless bee honey. Journal of Agricultural and Food Chemistry 70, 12596–12603. https://doi.org/10.1021/acs.jafc.2c04120
173. Naibaho NM, Salusu HD, Rudito R, Saragih B, Kusuma IW, Fatriasari W, Arung ET. (2023). Sensory evaluation and antibacterial activity of bee pollen extracts isolated from several stingless bees in two drying methods. Biodiversitas Journal of Biological Diversity 24. https://doi.org/10.13057/biodiv/d240521
174. Rodríguez-Malaver AJ, Pérez-Pérez EM, Vit P. (2007). Capacidad antioxidante de mieles venezolanas de los géneros Apis, Melipona y Tetragonisca, evaluada por tres métodos. Revista del Instituto Nacional de Higiene Rafael Rangel 38,13-18.
175. Nurdianah HF, Firdaus AA, Azam OE, Adnan WW. (2016). Antioxidant activity of bee pollen ethanolic extracts from Malaysian stingless bee measured using DPPH-HPLC assay. International Food Research Journal 23, 403. http://www.ifrj.upm.edu.my/23%20(01)%202016/(59).pdf
176. Harif Fadzilah N, Jaapar MF, Jajuli R, Wan Omar WA. (2017). Total phenolic content, total flavonoid and antioxidant activity of ethanolic bee pollen extracts from three species of Malaysian stingless bee. Journal of Apicultural Research 56, 130–135. https://doi.org/10.1080/00218839.2017.1287996
177. Carneiro AL, Gomes AA, Alves da Silva L, Alves LB, Cardoso da Silva E, da Silva Pinto AC, Tadei WP, Pohlit AM, Simas Teixeira MF, Gomes CC, Naiff MD. (2019). Antimicrobial and larvicidal activities of stingless bee pollen from Maues, Amazonas, Brazil. Bee World 96, 98–103. https://doi.org/10.1080/0005772X.2019.1650564
178. Mokaya HO, Nkoba K, Ndunda RM, Vereecken NJ. (2022). Characterization of honeys produced by sympatric species of Afrotropical stingless bees (Hymenoptera, Meliponini). Food Chemistry 366, 130597. https://doi.org/10.1016/j.foodchem.2021.130597
179. Mohammad SM, Mahmud-Ab-Rashid NK, Zawawi N. (2020). Probiotic properties of bacteria isolated from bee bread of stingless bee Heterotrigona itama. Journal of Apicultural Research 60, 172-87. https://doi.org/10.1080/00218839.2020.1801152
180. Alves RMO. (2013). Production and marketing of pot-honey. 541–556 pp. In: Vit P, Pedro SRM, Roubik D, editors. Pot-Honey. A Legacy of Stingless Bees. Springer; New York, USA. 654 pp.
181. Alves RMO, Carvalho CAL. (2018). Pot-pollen ‘samburá’ marketing in Braziland suggested legislation. 435–443 pp. In: Vit P, Pedro SRM, Roubik D, editors. Pot-Pollen in Stingless Bee Melittology. Springer Nature; Cham, Switzerland. 481 pp.
182. Yong CH, Muhammad SA, Nasir FI, Mustafa MZ, Ibrahim B, Kelly SD, Cannavan A, Seow EK. (2022). Detecting adulteration of stingless bee honey using untargeted 1H NMR metabolomics with chemometrics. Food Chemistry 368, 130808.
183. Vit P. (1993). Miel de Abejas. Cuaderno Ciencia de los Alimentos No. 1. Consejo de Publicaciones ULA; Mérida, Venezuela. 97 pp.
184. Vit P. (1998). A test to detect cane sugar honey. Archivos Latinoamericanos de Nutrición 48, 62–64.
http://orcid.org/0000-0003-4951-9404