Is Endoplasmic Reticulum Stresslinked to the Pathogenesis of Pemphigus Vulgaris?

Main Article Content

Chrysovalantou Mihailidoua Hippokratis Kiarisa Ioulia Chatzistamou


Pemphigus vulgaris (PV) is anorgan-specific autoimmune blistering disease, affecting the skin and the mucous membranes. Despite the breakthroughs in therapy for advanced disease in the recent years, the management of PV remains challenging with poor prognosis and limited therapeutic options.Cloning of cDNAs encoding pemphigus antigens has provided ample evidence that IgG autoantibodies recognize the desmogleins (DSGs) that are found in the adhering junctions, the desmosomes. Binding of such IgGs in the DSGs results in the weakeningof intercellular adhesion of keratinocytes in the upper part of the epidermis and eventually to acantholysis. Desmosomes have instrumental roleas a protective barrier in maintaining the integrity and function of the epidermis and the mucous epithelia.Mechanistically, the production of IgG autoantibodies against DSG1 and DSG3 is linked to disease pathogenesis. Recently,endoplasmic reticulum (ER) stress,a highly conserved cellular stress response,has been proposed to play a role in the development and progression of PV. ER stress triggers the activation ofseveral intracellular signaling pathwaysthat collectively constitute the unfolded protein response (UPR) thatinitially aims to restore homeostaticbalance while subsequently becomes proapoptotic. The discovery that ER stress occurs during PV development implies that deregulated UPR may contribute to the pathogenesis of the disease. Future studies should be directed toward understanding how modulation of the ER can provide new therapeutic possibilities for the treatment of  PV patients.

Key Words:Pemphigus Vulgaris (PV), desmogleins (DSGs), Endoplasmic Reticulum (ER) stress ER-stress, Unfolded protein response (UPR), C/EBP-homologous protein (CHOP), autoimmune disease

Article Details

How to Cite
MIHAILIDOUA, Chrysovalantou; KIARISA, Hippokratis; CHATZISTAMOU, Ioulia. Is Endoplasmic Reticulum Stresslinked to the Pathogenesis of Pemphigus Vulgaris?. Medical Research Archives, [S.l.], v. 4, n. 7, nov. 2016. ISSN 2375-1924. Available at: <>. Date accessed: 03 dec. 2023.
Review Articles


Al-Jassar C, Bikker H, Overduin M, Chidgey M. (2013) Mechanistic basis of desmosome-targeted diseases. J. Mol. Biol. 425, 4006–4022.
Amagai M., Klaus-Kovtun V., Stanley J.R. (1991) Autoantibodies against a novel epithelial cadherin in pemphigus vulgaris, a disease of cell adhesion. Cell. 67, 869–877
Amagai, M., Nishikawa, T., Nousari, H. C., Anhalt, G. J., & Hashimoto, T. (1998). Antibodies against desmoglein 3 (pemphigus vulgaris antigen) are present in sera from patients with paraneoplastic pemphigus and cause acantholysis in vivo in neonatal mice. Journal of Clinical Investigation, 102(4), 775–782.
Anhalt G.J., Kim S., Stanley J.R., Korman N.J., Jabs D.A., Kory M., et al. (1990) Paraneoplastic pemphigus. An autoimmune mucocutaneous disease associated with neoplasia.N. Engl. J. Med.323, 1729–1735
Anhalt G.J., Labib R.S., Voorhees J.J., Beals T.F., Diaz L.A. (1982) Induction of pemphigus in neonatal mice by passive transfer of IgG from patients with the disease. N. Engl. J. Med. 306, 1189–1196
Aoyama, Y., Owada, M. K., & Kitajima, Y. (1999). A pathogenic autoantibody, pemphigus vulgaris-IgG, induces phosphorylation of desmoglein 3, and its dissociation from plakoglobin in cultured keratinocytes. European Journal of Immunology, 29(7), 2233–2240.<2233::AID-IMMU2233>3.0.CO;2-4
Berkowitz, P., Hu, P., Liu, Z., Diaz, L. A., Enghild, J. J., Chua, M. P., & Rubenstein, D. S. (2005). Desmosome signaling: Inhibition of p38MAPK prevents pemphigus vulgaris IgG-induced cytoskeleton reorganization. Journal of Biological Chemistry, 280(25), 23778–23784.
Beutner E.H., Jordon R.E. (1964)Demonstration of skin antibodies in sera of pemphigus vulgaris patients by indirect immunofluorescent staining. Proc. Soc. Exp. Biol. Med, 117, 505–510
Bystryn, J. C., & Rudolph, J. L. (2005). Pemphigus. In Lancet (Vol. 366, pp. 61–73).
Caldelari, R., De Bruin, A., Baumann, D., Suter, M. M., Bierkamp, C., Balmer, V., & Müller, E. (2001). A central role for the armadillo protein plakoglobin in the autoimmune disease pemphigus vulgaris. Journal of Cell Biology, 153(4), 823–834.
Calfon, M., Zeng, H., Urano, F., Till, J. H., Hubbard, S. R., Harding, H. P., Ron, D. (2002). IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA. Nature, 415(6867), 92–96.
Calkins, C. C., Setzer, S. V., Jennings, J. M., Summers, S., Tsunoda, K., Amagai, M., & Kowalczyk, A. P. (2006). Desmoglein endocytosis and desmosome disassembly are coordinated responses to pemphigus autoantibodies. Journal of Biological Chemistry, 281(11), 7623–7634.
Cirillo, N., Lanza, M., Femiano, F., Gaeta, G. M., De Rosa, A., Gombos, F., & Lanza, A. (2007). If pemphigus vulgaris IgG are the cause of acantholysis, new IgG-independent mechanisms are the concause. Journal of Cellular Physiology, 212(3), 563–567.
Harding, H. P., Novoa, I., Zhang, Y., Zeng, H., Wek, R., Schapira, M., & Ron, D. (2000). Regulated Translation Initiation Controls Stress-Induced Gene Expression in Mammalian Cells. Molecular Cell, 6(5), 1099–1108.
Harding, H. P., Zhang, Y., & Ron, D. (1999). Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase. Nature, 397(6716), 271–274.
Harding, H. P., Zhang, Y., Bertolotti, a, Zeng, H., & Ron, D. (2000). Perk is essential for translational regulation and cell survival during the unfolded protein response. Molecular Cell, 5(5), 897–904.
Hashimoto T., Ogawa M.M., Konohana A., Nishikawa T. (1990) Detection of pemphigus vulgaris and pemphigus foliaceus antigens by immunoblot analysis using different antigen sources. J. Invest. Dermatol. 94, 327–331
Hong, M., Li, M., Mao, C., & Lee, A. S. (2004). Endoplasmic reticulum stress triggers an acute proteasome-dependent degradation of ATF6. Journal of Cellular Biochemistry, 92(4), 723–732.
Ishii, K., Amagai, M., Hall, R. P., Hashimoto, T., Takayanagi, A., Gamou, S., Nishikawa, T. (1997). Characterization of autoantibodies in pemphigus using antigen-specific enzyme-linked immunosorbent assays with baculovirus-expressed recombinant desmogleins. Journal of Immunology (Baltimore, Md. : 1950).
Jolly, P. S., Berkowitz, P., Bektas, M., Lee, H. E., Chua, M., Diazr, L. A., & Rubenstein, D. S. (2010). p38MAPK signaling and desmoglein-3 internalization are linked events in pemphigus acantholysis. Journal of Biological Chemistry, 285(12), 8936–8941.
Kershenovich R., Hodak E., Mimouni D. (2014) Diagnosis and classification of pemphigus and bullous pemphigoid. Autoimmun. Rev. 13, 477–81.
Koch P.J., Walsh M.J., Schmelz M., Goldschmidt M.D., Zimbelmann R., Franke W.W. (1990) Identification of desmoglein, a constitutive desmosomal glycoprotein, as a member of the cadherin family of cell adhesion molecules. Eur. J. Cell Biol. 53, 1–12 [PubMed]
Koulu, L., Kusumi, A., Steinberg, M. S., Klaus-Kovtun, V., & Stanley, J. R. (1984). Human autoantibodies against a desmosomal core protein in pemphigus foliaceus. J Exp Med, 160(5), 1509–1518.
Lanza, A., Lanza, M., Santoro, R., Soro, V., Prime, S. S., & Cirillo, N. (2011). Deregulation of PERK in the autoimmune disease pemphigus vulgaris occurs via IgG-independent mechanisms. British Journal of Dermatology, 164(2), 336–343.
Lee, A.-H., Iwakoshi, N. N., & Glimcher, L. H. (2003). XBP-1 regulates a subset of endoplasmic reticulum resident chaperone genes in the unfolded protein response. Molecular and Cellular Biology, 23(21), 7448–59.
Malheiros, D., Panepucci, R. A., Roselino, A. M., Araújo, A. G., Zago, M. A., & Petzl-Erler, M. L. (2014). Genome-wide gene expression profiling reveals unsuspected molecular alterations in pemphigus foliaceus. Immunology, 143(3), 381–395.
Mao, X., Sano, Y., Park, J. M., & Payne, A. S. (2011). p38 MAPK activation is downstream of the loss of intercellular adhesion in pemphigus vulgaris. Journal of Biological Chemistry, 286(2), 1283–1291.
Mascaro JM Jr, Espana A, Liu Z, Ding X, Swartz SJ, et al. (1997) Mechanisms of acantholysis in pemphigus vulgaris: role of IgG valence. Clin Immunol Immunopathol. 85: 90–96
Mihailidou C, Katsoulas N, Panagiotou E, Farmaki E, Sklavounou A, Kiaris H, Chatzistamou I. (2016) Endoplasmic Reticulum stress is associated with the pathogenesis of Pemphigus Vulgaris. Exp Dermatol. Apr 6. doi: 10.1111/exd.13026.

Mihailidou C., Papazian I., Papavassiliou A. G., Kiaris H. (2010) CHOP-dependent Regulation of p21/waf1 During ER Stress. Cell Physiol Biochem, 25(6),761-6.
Mihailidou, Ca., Chatzistamou, I., Papavassiliou, A. G., & Kiaris, H. (2015). Regulation of P21 during diabetes-associated stress of the endoplasmic reticulum. Endocrine-Related Cancer, 22(2), 217–228.
Mihailidou, Cb., Chatzistamou, I., Papavassiliou, A. G., & Kiaris, H. (2015). Improvement of chemotherapeutic drug efficacy by endoplasmic reticulum stress. Endocrine-Related Cancer, 22(2), 229–238.
Nishitoh, H., Matsuzawa, A., Tobiume, K., Saegusa, K., Takeda, K., Inoue, K., … Ichijo, H. (2002). ASK1 is essential for endoplasmic reticulum stress-induced neuronal cell death triggered by expanded polyglutamine repeats. Genes and Development, 16(11), 1345–1355.
Osada, K., Seishima, M., & Kitajima, Y. (1997). Pemphigus IgG activates and translocates protein kinase C from the cytosol to the particulate/cytoskeleton fractions in human keratinocytes. J Invest Dermatol, 108(4), 482–487. [pii]
Payne, A. S., Ishii, K., Kacir, S., Lin, C., Li, H., Hanakawa, Y., Siegel, D. L. (2005). Genetic and functional characterization of human pemphigus vulgaris monoclonal autoantibodies isolated by phage display. Journal of Clinical Investigation, 115(4), 888–899.
Ramoni, C., Spadaro, F., Barletta, B., Dupuis, M. L., & Podo, F. (2004). Phosphatidylcholine-specific phospholipase C in mitogen-stimulated fibroblasts. Experimental Cell Research, 299(2), 370–382.
Ron, D., & Walter, P. (2007). Signal integration in the endoplasmic reticulum unfolded protein response. Nature Reviews. Molecular Cell Biology, 8(7), 519–529.
Ruocco V, Ruocco E, Lo Schiavo A, et al. (2013) Pemphigus: Etiology, pathogenesis, and inducing or triggering factors: Facts and controversies. Clin Dermatol. 31, 374–81.
Rutkowski, D. T., & Kaufman, R. J. (2007). That which does not kill me makes me stronger: adapting to chronic ER stress. Trends in Biochemical Sciences.
Santoro FA, Stoopler ET, Werth VP. Pemphigus.(2013) Dent. Clin. North Am. 57, 597–610.
Schiltz J.R., Michel B. (1976) Production of epidermal acantholysis in normal human skin in vitro by the IgG fraction from pemphigus serum. J. Invest. Dermatol. 67, 254–260
Seishima M, Esaki C, Osada K, Mori S, Hashimoto T, Kitajima Y. Pemphigus IgG, but not bullous pemphigoid IgG, causes a transient increase in intracellular calcium and inositol 1,4,5-trisphosphate in DJM-1 cells, a squamous cell carcinoma line. (1995)Journal of Investigative Dermatology. 104(1),33–37. [PubMed]
Sharma P, Mao X, Payne AS. (2007) Beyond steric hindrance: The role of adhesion signaling pathways in the pathogenesis of pemphigus. J Dermatol Sci. 48, 1–14.
Shen, X., Ellis, R. E., Lee, K., Liu, C. Y., Yang, K., Solomon, A., Kaufman, R. J. (2001). Complementary signaling pathways regulate the unfolded protein response and are required for C. elegans development. Cell, 107(7), 893–903.
Spindler V, Rotzer V, Dehner C, et al. (2013) Peptide-mediated desmoglein 3 crosslinking prevents pemphigus vulgaris autoantibody-induced skin blistering. J Clin Invest.
Spindler V, Waschke J. (2014) Desmosomal cadherins and signaling: lessons from autoimmune disease. Cell Commun Adhes. 21, 77-84
Spindler, V., & Waschke, J. (2011). Role of Rho GTPases in desmosomal adhesion and pemphigus pathogenesis. Annals of Anatomy.
Stanley J.R., Yaar M., Hawley N.P., Katz S.I. (1982) Pemphigus antibodies identify a cell surface glycoprotein synthesized by human and mouse keratinocytes. J. Clin. Invest.70, 281–288
Sugiura, K., Muro, Y., Futamura, K., Matsumoto, K., Hashimoto, N., Nishizawa, Y., Usukura, J. (2009). The unfolded protein response is activated in differentiating epidermal keratinocytes. The Journal of Investigative Dermatology, 129(9), 2126–35.
Tsunoda, K., Ota, T., Aoki, M., Yamada, T., Nagai, T., Nakagawa, T., … Amagai, M. (2003). Induction of pemphigus phenotype by a mouse monoclonal antibody against the amino-terminal adhesive interface of desmoglein 3. Journal of Immunology (Baltimore, Md. : 1950), 170, 2170–2178.
Urano, F., Bertolotti, a, & Ron, D. (2000). IRE1 and efferent signaling from the endoplasmic reticulum. Journal of Cell Science, 113 Pt 21, 3697–3702.
Urano, F., Wang, X., Bertolotti, A., Zhang, Y., Chung, P., Harding, H. P., & Ron, D. (2000). Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1. Science (New York, N.Y.), 287(5453), 664–6.
Waschke, J. (2008). The desmosome and pemphigus. Histochemistry and Cell Biology.
Waschke, J., & Spindler, V. (2014). Desmosomes and Extradesmosomal Adhesive Signaling Contacts in Pemphigus. Medicinal Research Reviews, 34(6), 1127–1145.
Waschke, J., Bruggeman, P., Baumgartner, W., Zillikens, D., & Drenckhahn, D. (2005). Pemphigus foliaceus IgG causes dissociation of desmoglein 1-containing junctions without blocking desmoglein 1 transinteraction. Journal of Clinical Investigation, 115(11), 3157–3165.
Waschke, J., Spindler, V., Bruggeman, P., Zillikens, D., Schmidt, G., & Drenckhahn, D. (2006). Inhibition of Rho A activity causes pemphigus skin blistering. Journal of Cell Biology, 175(5), 721–727.
Ye, J., Rawson, R. B., Komuro, R., Chen, X., Dav??, U. P., Prywes, R., … Goldstein, J. L. (2000). ER stress induces cleavage of membrane-bound ATF6 by the same proteases that process SREBPs. Molecular Cell, 6(6), 1355–1364.
Yoshida, H., Haze, K., Yanagi, H., Yura, T., & Mori, K. (1998). Identification of the cis-acting endoplasmic reticulum stress response element responsible for transcriptional induction of mammalian glucose- regulated proteins: Involvement of basic leucine zipper transcription factors. Journal of Biological Chemistry, 273(50), 33741–33749.
Yoshida, H., Matsui, T., Hosokawa, N., Kaufman, R. J., Nagata, K., & Mori, K. (2003). A time-dependent phase shift in the mammalian unfolded protein response. Developmental Cell.
Yoshida, H., Matsui, T., Yamamoto, A., Okada, T., & Mori, K. (2001). XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell, 107(7), 881–891.